Abschlußbericht

für das Projekt

SEAMOUNTFLUX

Effiziente Abkühlung junger ozeanischer Kruste durch Zirkulation von Meerwasser durch Seamounts (Guatemala Becken, Ostpazifik)

Förderkennzeichen 03G0207A

Zeitraum 1.3.2010 – 31.4.2012

Prof. Dr. H. Villinger

Prof. Dr. T. Pichler

Fachbereich Geowissenschaften

Universität Bremen

Bremen

1.0 Scientific Background and goal of the project

The scientific goal of the project "SeamountFlux" was to investigate the exchange of matter and energy between the ocean and the upper lithosphere in the vicinity of unexplained circular depressions in the sediment cover of the Cocos Plate (see Figure 1), previously already described in the literature. Bekins et al. (2007) hypothesize that these 'hydrothermal pits' are possibly responsible for the plate-wide cooling of the oceanic crust of the Cocos Plate. They presented a possible model how these pits are formed: warm, diffuse outflow of hydrothermal fluids within the pits dissolve the calcium carbonate (CaCO₃) minerals in the sedimentary cover and create hereby the depressions observed in the bathymetry. The discharging warm fluid is probably entering the upper crust at seamounts, heats up and escapes at the pits. If such a process is going over geological time scales it will affect the thermal structure in and around the pits as well as the geochemistry of the pore water inside the pits. The goal of the investigation was to test this hypothesis by mapping the pits acoustically (swath bathymetry, Parasound sediment echo sounding and reflection seismic), measure heat flow inside and outside of pits and collect pore water from sediment cores also from inside and outside of the pits.

2. Sequence of activities within the project

2.1 Scientific work during expedition SO207

Ms. Schmidt-Schierhorn (MSc Marine Geosciences) and Mr. Becke (Dipl. Geol.) were contracted at the beginning of the project to start with the preparations for expedition SO207. This included technical preparation such as collecting relevant data and publications. A summary of published papers on the working area and the scientific background of the cruise were handed out to all cruise participants. Maps and seismic profiles of the working areas were printed out to serve as a working base on board.

Expedition SO207 took place from 21st of June to 13th of July 2010, approximately 360 nautical miles off Costa Rica (East Pacific, ca. 8°N and 90°W). Figure 1 shows the location of the working area. On board of the German research vessel SONNE were scientists from the University of Bremen and one Scientist from the University of Bern.

During cruise SO207 we mapped the pits in three working areas (Figure 1 Figure 1 and Figure 2) with acoustical methods (bathymetry, sediment echo sounding and single channel seismic). Seismic lines crossed ODP/IODP sites 844 and 1256 in order to calibrate the seismic records and to correlate prominent reflectors with dated horizons in the boreholes. Heat flow measurements were always done on seismic lines to allow later the calculation of basement temperatures. Gravity cores provided the samples for pore water and sedimentary analysis.

Seismic profiles (Figure 2) with an overall length of 400 km and more than 5600 km² of obtained bathymetry data provide detailed acoustical surveys of the pits and their surroundings. The acoustic mapping showed that most hydrothermal pits are about 100 to 150 m deep with a diameter of about 1 km. Heat flow measurements (140 in total on 9 profiles) around seamounts confirm that they act as pathways for cold seawater which leads to a large cooling effect in the vicinity of the seamount where heat flow values as low as 10 mW/m² were measured. All heat flow values inside the pits show values up to five times higher than background values around the pits.

Sediment was collected with a gravity corer with a total recovery of 191 m. From these cores we extracted 451 pore water samples which were analyzed in Bremen.

Overall, the cruise was extremely successful as we got the data needed to support or reject the scientific hypothesis and to investigate the role of the hydrothermal pits.

Directly after coming back from the expedition, the cruise report was prepared and printed in mid-October 2010. It contains all detailed information with respect to location of profiles, location of gravity cores and location of heat flow measurements. All measured data was given to Dr. Grobe (Alfred-Wegener-Institut für Polarforschung, Bremerhaven) for adding it to the database Pangaea.

2.2 Processing and interpretation of the collected data

3.0 Results

In the following we will summarize the main results of the geophysical and the sedimentological and geochemical investigations and discuss the main results of the three working areas. Additional figures and tables can be found in the two appendices, one for Sediments and Pore Water (abbreviated as Appendix SPW) and the other one for Geophysics (abbreviated as Appendix G).

3.1 Geophysics

3.1.1 Processing of geophysical data

After finishing the cruise report, the geophysical data were processed in detail. This included the following:

- > Bathymetry
 - Clearing up the raw data
 - Generate consistent maps for each working area
 - Generate detailed maps for specific regions
- Parasound
 - Re-play all Parasound profiles
 - Generate maps with Parasound profiles and navigational information
- Seismic
 - Draw up geometry and calculate shot point navigation
 - Determine ideal filter parameters
 - Stacking of CDPs
 - Migration
 - Generate maps with seismic profiles and shot point navigation
 - Calculate sediment thickness with data from next ODP site and draw result in a map
- Heat flow measurements
 - Consistent post processing of all heat flow measurements
 - Combining seismic sections with heat flow profiles.

• Calculate temperature at the sediment-basement boundary based on measured heat flow and sediment thickness.

3.1.2 Results of the geophysical survey

Summary of the most important results:

- ➢ Hydrothermal pits are easily identifiable in the detailed bathymetry. Most of them have a depth between 50 and 100 m and a diameter of about one kilometer.
- The seismic profiles show that the sediment thickness is significantly smaller inside the pits than in the surrounding area. The reason for this is a slight basement elevation inside the pits but obviously also a missing sediment section, compared to the sediment section outside of the pits.
- The well layered sedimentary structure outside of the pits is highly disrupted inside the pits. Therefore a direct correlation of layers inside and outside is difficult if not impossible.
- Sediment thickness was calculated on all seismic profiles calibrated with core data from ODP site 844 in WA 1 and ODP site 1256 in WA 3.
- Heat flow measurements inside the pits show values which are up to 5 times higher than the surrounding values outside the pits. This increase is not fully explainable by the smaller amount of sediment lying in the depressions.
- All heat flow measurements in the vicinity of seamounts show low values of even less than 10 mW/m². These results support the hypothesis that cold seawater enters the upper crust through permeable seamounts and hereby cools down the surrounding of the seamount up to distances of 10 km or more. This large-scale cooled down zone suggests a strong and efficient circulation system which had been active over possibly millions of years.
- Calculated basement temperatures based on measured heat flow show that temperature at the sediment-basement boundary is not isothermal, which is a strong indication that the circulation in the upper crust cannot be very vigorous.

3.1.2.1 Working area 1

We surveyed WA 1 with bathymetry, seismics and sediment echosounding (Parasound) on twelve profiles (see profiles in the Appendix G). In the southern part of WA 1, there is a high seamount of about 400 m height just about 10 km south of ODP site 844. A series of hydrothermal pits is clearly visible in the bathymetry and on seismic profile 'a' (see Figure 7). Three heat flow profiles complete the measurements. Profile 'a' and 'b' cross over the largest pit in the working areas (see detailed map in Figure 29), while Profile 'c' is measured towards the seamount. Figure 3 to Figure 8 show the results from WA 1.

Profile 'a' (see Figure 3) and 'c' show significantly higher heat flow in within the hydrothermal pit. Profile 'c' starting at ODP site 844 and runs towards the seamount shows extremely low heat flow an indication that the seamount acts as recharge site.

A detailed look at the sedimentary structure inside the largest pit in all three working areas (Figure 5 and Figure 6; called The Pit in the following) shows that the upper sediment layer of about 50 to 60 m is continuous across the pit but underneath this top layer the layering is very

disrupted and a correlation of layers inside and outside of the pit is very difficult if not impossible. The top layer can be traced all the way from ODP site 844 to the pit and consists of pelagic mud with little carbonate content. Heat flow inside the pit is a factor of 5 larger than outside the pit.

In addition, we surveyed an area between two pits on Profile 'a' (the largest one and the first one more south of it) with the Ocean Seafloor Observation System (OFOS). The goal was to see if there are any visible changes of sediment color or surface inside and outside of a pit. Unfortunately, the visual observations do not show any changes.

3.1.2.2 Working area 2

In WA 2 is another high seamount in the northwestern corner. Additionally there are some ridges and troughs distributed in the center and a number of hydrothermal pits in the northern half. Seismic, bathymetric and Parasound data was obtained on 15 profiles. Four heat flow surveys give additional information on the thermal state. Profile 'd' was conducted in the vicinity of the seamount, while profile 'e' and 'f' are running over a hydrothermal depressions. Profile 'g' was measured perpendicular to a system of ridges and troughs in order to examine thermal anomalies produced through this relief.

As seen in WA 1, the sediment thickness over hydrothermal pits is also reduced in working area 2 (see Appendix G). Profile 'd', which is running up north towards the seamount, shows again extremely low heat flow values (see Figure 10) again as in WA 1 a strong indication that the seamount is a recharge site of cold seawater. Higher heat flow is measured in profile 'e' and 'f' (see Figure 10 and Figure 11) inside the pits. Figure 11 shows a heat flow profile across a small pit in the southwest of WA 2 where heat flow is again almost 5 times higher compared to background values. In profile 'g', no evidence for varying flow can be found while measuring over ridges and troughs.

3.1.2.3 Working Area 3

WA 3 contains IODP site 1256 and was investigated less intensive than the others due to time constraints. Seismic, bathymetric and Parasound data was obtained on numerous profiles (Figure 2) but we had only time for one heat flow profile. In this area pits seem to be more elongated in shape and coinciding with ridges. One heat flow profile was run over the largest pit in the area. Figure 14 shows all values superimposed on bathymetry whereas Figure 16 the profile in detail. It is obvious that the heat flow anomaly in the pit is superimposed on a large-scale heat flow depression with a minimal heat flow value of almost zero. Calculated temperatures at the sediment-basement boundary Figure 16 reveal that in the southwestern part of the profile basement temperatures are only slightly above seawater temperatures.

3.1.2.4 Working area between 2 and 3

Between WA 3 and WA 2 is a relatively large donut-shaped seamount of almost perfect circular shape and a clearly visible caldera (southwestern corner of map, shown in Figure 9). A heat flow profile (Figure 17) shows again decreasing heat flow as one approaches the seamount. Measurements at the foot of the seamount were not possible as the heat probe could not penetrate most likely due to the sandy nature of the vulcanoclastic sediments. Two measurements inside the caldera show almost identical values of 10 mW/m^2 . The significant rise in the middle of the profile is enigmatic but due to time constraints we could not investigate the location in more detail.

3.2 Sediment and pore water analyses

3.2.1 Sediment

Following the cruise additional sedimentary measurements were made in the laboratories at the University of Bremen. This included the following:

- Chemical composition
 - Investigation of elemental composition on the surface of the split sediment cores by X-ray Fluorescence (XRF) scanning
 - Total carbon analysis with a LECO CS analyzer
 - Preparation of concentration plots against depth for the individual cations
- Sediment compaction
 - Compression testing with oedometer
 - Plots of isotope values against depth for selected cores
- Sediment characteristics
 - Detection of dissolution features with a scanning electron microscope

Summary of the most important results:

- The diagrams of the carbonate content in the depth profiles do not show, similar to the profiles of the calcium concentration of the pore water, an explicit trend with increasing depth. The carbonate content is reflecting the lithological compositions of sediment layers.
- The foraminifera are mostly undamaged. The pores are in good shape and do not exhibit cracks. The bases of the spines of the shells are still in good shape. These features indicate that no carbonate dissolution in the sediment layer is taking place.
- The compressibility of the sediment samples from inside and outside of the hydrothermal pits show only a very small difference. The different length of the cores inside and outside of the pits is thus not attributed to compaction of the sediment.
- The elemental composition of the sediments, as obtained by XRF scanner, does not show any increasing or decreasing trends for calcium carbonate.

3.2.1.1 Chemical composition

In all, 433 sediment samples were collected from the cores of the three working areas (Table 1. Station overview for the three different working areas WA 1 (GUATB1), WA 2 (GUATB2) and WA 3 (GUATB3).) and homogenized to a fine powder. Subsequently they were analyzed by CS-Analyzer from the company LECO to obtain information about calcium carbonate (CaCO3) content and total organic carbon content (Appendix SPW, I).

The CaCO₃ content of sediment samples in working area 1 is considerably smaller than in working areas 2 and 3. The measured values range from 0 wt% to 24 wt%, while in the working area 2 the content varies from 0 wt% up to 85 wt%. The high CaCO₃ content at this working area results from the fact that in some cores, e.g. GeoB14608, a white calcareous sediment layer occurs. This leads to an increasing of calcium carbonate content. In the working area 3 the

CaCO₃ content varies from 0 wt% to 35.09 wt%. The CaCO₃ profiles are compared to calcium concentration in the corresponding pore water (Figure 20 to Figure 24). Calcium content of the pore water seems to be not affected by the presence of CaCO₃. There is no difference between core from the inside or outside of the pits. The lithological compositions of sediment and organic matter are responsible for the changing of total organic carbon and calcium carbonate content. Some good examples for changing of calcium carbonate content are very well visible on sediment cores GeoB14608, GeoB 14609 and GeoB14613 (Figure 22 and Figure 23). The abruptly changing of brownish nannofossil ooze to white flocculent sediment layer is reflected in increasing of calcium carbonate content.

For the analysis of elemental compositions of the sediment samples, 10 cores were selected, 7 cores from working area 1 and 3 cores from working area 2 and the XRF scans are presented in Appendix SPW II. The chosen cores from both working areas are situated on a transect across a pit. As reference for 'normal seafloor' core GeoB14601 was chosen. The results exhibit very interesting aspects in terms of sediment deposition from core taken from normal seafloor to cores collected within pits. Because of their clear peaks of diagrams, element silica (Si), titanium (Ti), iron (Fe) and potassium (K) were used to correlate the sedimentary units between cores. The correlation between cores GeoB14601 and GeoB14621, both retrieved from core sites outside of pits, are feasible. The bedding of sediment unit seems to be in the same depth (Appendix SPW II). The peaks of Si, Ti, Fe and K of both cores occur nearly at the depth of approx. 7.5 m and 9.5 m. The trace of aforementioned peaks of elements from core outside of pit to core taken inside of pit is until core GeoB14622 practicable. The core GeoB14622 collected on the slope of a pit at the same transect exhibit peaks that are situated at the depth of approx. 1.7 m. These results show that the same sediment units are deposited in different depth across the transect. Cores from working area 2 do not show peaks that would help to correlate the sediment unit like in working area 1.

3.2.1.2 Sediment compaction

Core recoveries inside the pits were generally less than outside, which could lead to the interpretation that the sediments inside the pits are more compacted. To further investigate this, several cores underwent oedometer testing in the laboratory.

Samples from core GeoB14605, which was collected inside a pit and samples from core GeoB12621, which was collected from the surrounding seafloor were compared in their compaction behavior. The results exhibit only minimal discrepancy between both pressure-void ratio diagrams (Figure 25). Both graphs are nearly identical and the diagrams show the typical steep gradients of curves that indicate sediment with clayey compositions. In general both diagrams do not indicate clearly a difference of compaction between the sediments deposited outside of pits and the ones deposited within pits.

3.2.1.3 Sediment characteristics

If the dissolution of calcium carbonates, such as, calcite and aragonite, is the cause for the pits, then dissolution features should be observable on calcite and aragonite in the sediments. Particularly useful is the examination of the surface texture of planktic foraminifera tests, which can indicate the dissolution of calcium carbonate (Dittert and Henrich, 2000). Seven sediment samples were prepared for the analysis of the tests by scanning electron microscopy. From core

GeoB14619 the depths of 358 cm, 531 cm and 671 cm were examined. From core GeoB14621 the depths of 714 cm and 764 cm were used. From core GeoB14608 the depths of 405 cm and 809 cm were examined.

The results of the analysis of foraminifera tests exhibit a relative well-preserved form and surface textures in all chosen samples (Figure 26). The form of the test is in pristine condition. Furthermore the spine bases show only slightly denuded signs and the rounded pores are still very well recognizable. These observations would make any ongoing dissolution unlikely.

3.2.2 Pore water

Following the cruise additional geochemical measurements were made in the laboratories at the University of Bremen. This included the following:

- Cation analysis
 - Measurement of Al, B, Ba, Ca, Fe, K, Li, Mg, Mn, Na, P, S, Si and Sr by inductively coupled plasma-optical emission spectrometry on a PerkinElmer instrument
 - Preparation of concentration plots against depth for the individual cations
- Anion analysis
 - Measurement of fluoride, chloride, bromide and sulfate by ion chromatography on a Metrohm instrument
 - Preparation of concentration plots against depth for the individual anions
 - Calculation of bicarbonate concentrations from shipboard alkalinity measurements
- Isotopic analysis
 - Measurement of δD and $\delta^{18}O$ values against VSMOW by laser cavity ring down spectrometry on a LGR LT instrument
 - Plots of isotope values against depth for selected cores

Summary of the most important results:

- The concentrations of calcium and incorporated strontium, which are important indicators calcium carbonate dissolution did not show any indication for dissolution.
- Pore water profiles were more or less identical, whether collected inside or outside a pit. Chloride, SO₄, Na, Mg, K, Ca, and Sr concentrations were identical to those in seawater.
- The isotopic values were close to seawater and did not indicate water-rock interaction in the volcanic basement.
- We generally observed larger differences between the 3 working areas than between the inside and outside samples.

3.2.2.1 Working area 1

The complete results are given in Appendix SPW, III and pore water profiles for Ca, Sr, Mg, Si, K and Mn are presented in Figure 27 and Figure 28. The average of pore water concentrations for calcium vary from 380 to 420 mg/L, while the strontium values lie between 7,7 and 8,7 mg/L (Figure 27). The magnesium values range from 1200 to 1300 mg/L. The pore water

concentrations of dissolved silica increased from 3.4 mg/L in bottom water to the average values between 16 and 23 mg/L in sediment cores. The chloride and sodium concentration show constant depth profiles with increasing depth. The overall average values range from 19500 to 21000 mg/L and 11100 to 11400 mg/L, respectively. There are few oscillations in the profiles, which are caused by the systematic analytical error of two percent. Calcium and strontium concentrations in pore water do hardly show any changes in the cores. The values are close to those of bottom water. Except in cores GeoB14621, GeoB14622 and GeoB14623, which were taken from the outside of the hydrothermal pit (Figure 28). They display a very slight increase of calcium and strontium concentration with depth. Furthermore there are fluctuations in core GeoB14605 possibly caused by an error of measurement. To ensure the analyses in terms of their correctness the ion balances calculation was performed and the results for the concentration values at site GeoB14605 confirmed an error of measurement. The silica concentrations in working area 1 increase exponentially within 4 to 5 cm and remain constant below a depth of 20 cm. The profiles indicate a decrease of silica dissolution with depth and diffusive transport. Typically, silicate profiles in pore water show an exponential increase downward until the concentration levels off at a value referred to as the asymptotic concentration (Sayles et al., 1996; Rabouille et al., 1997). The magnesium concentrations remain constant with increasing depth. The magnesium concentration profiles correlate very well with calcium concentration profiles. The profiles do not indicate any new minerals formation like e.g. dolomite with depth.

After careful consideration there are no apparent signs in the concentration profiles of pore water, which indicate the dissolution of calcium carbonate in this working area. In terms of calcareous sediment dissolution, the concentrations of calcium and strontium in pore water should increase with depth. In general the increasing and decreasing of cations concentration of pore water are often correlated with changes of the mineralogical components of sediment layers. The changes of silty and clayish units to sandy layers e.g. are frequently reason for the shift of calcium and strontium concentration profiles of pore water. At location GeoB14601 the cation concentration profiles change within the depth of 67 - 73 cm. This change is associated with a change of clayish sediment unit to sandy layer. This behavior of changing in concentration profiles was observed in all 3 working areas.

In addition to standard chemical analyses, $\delta^2 H$ and $\delta^{18} O$ values were determined for pore water from four cores (Table 2 and Figure 30), which were taken along a transect across the pit slope (Figure 29). The orange profile GeoB14621 represents the core collected from the outside of the pit, while the green profile GeoB14623 represents the core taken on the slope and the two blue profiles GeoB14619 and GeoB14625 represent the cores retrieved within the pit. The red dots show the values of bottom seawater. The δ^2 H and δ^{18} O values in GeoB14621 (outside) show little variation and are similar to seawater. The δ^2 H values vary from -2.63 ‰ at the depth of 68 cm to 1.52 ‰ at the depth of 264 cm. The δ^{18} O values range between -0.31 ‰ at the depth of 464 cm and 0.79 ‰ at the depth of 514 cm. The δ^{2} H and δ^{18} O values in GeoB14623 (slope) are relative constant over entire core. The δ^2 H values vary from 0.38 ‰ at the depth of 377 cm to 4.17 ‰ at the depth of 677 cm. The δ^{18} O values range between -0.89 ‰ at the depth of 527 cm and 0.53 ‰ at the depth of 477 cm. Within the sandy layer at the depth from 639 to 643 cm the δ^{2} H and δ^{18} O values still remain constant. The measured δ^{18} O and δ^{2} H values in GeoB14619 (inside) show the highest degree of variability. However, the variability is systematic, when $\delta^2 H$ values increase, the δ^{18} O values decrease and vice versa. The δ^{2} H values vary by about 5 ‰ between -2.8 ‰ at a depth of 394 cm and 1.87 ‰ at a depth of 258 cm. The δ^{18} O values vary by about 1.5 % between -0.76 % at the depth of 657 cm and 0.67 % at the depth of 63 cm. It is

quite obviously that the change in lithological composition does not affect the isotopic composition. By changing of clayish unit to sandy layer at the depth of 38 cm and 151 cm, the measured isotopic values do not show changes. Pore water taken from core GeoB14625, which was also taken from the inside of the pit shows much less variation than GeoB14619. Compared to the other cores here the δ^2 H and δ^{18} O values show a relative constant trend throughout the entire core. The δ^2 H values vary by about 3 ‰ between -1.25 ‰ at a depth of 80 cm to 2.04 ‰ at the depth of 480 cm. The δ^{18} O values range between -0.14 ‰ at the depth of 380 cm and 0.43 ‰ at a depth of 130 cm.

3.2.2.2 Working area 2

The complete results are given in Appendix SPW, III and pore water profiles for Ca, Sr, Mg, Si, K and Mn are presented in Figure 31 and Figure 32. The calcium concentrations vary from 390 to 420 mg/L, while the concentrations of dissolved strontium lie between 7.4 and 8.1 mg/L. The overall concentrations of magnesium in sediment cores range from 1230 to 1312 mg/L. The concentrations of dissolved silica vary from 11.7 to 17.4 mg/L (see Figure 22 and Figure 23). There are some fluctuations of calcium concentration profiles. The obvious fluctuation is observed in sediment core GeoB14609. Furthermore the increasing of calcium concentrations was measured in cores GeoB14607, GeoB14608 and was particularly apparent in core GeoB14612 (Figure 32). The fact is reflected as well on strontium values. They also show a rise of concentration with increasing depth. These slightly increasing of calcium concentration profiles are not to distinct between samples taken from the outside of pit and samples taken within pits. The trend of dissolved silica concentration profiles are similar to those concentration profiles of the working area GUATB1, the concentration increases immediately within 4 to 5 cm and continue to remain constant with depth. The magnesium concentration profiles show a relatively constant values downcore, except cores GeoB14608, GeoB14612 and GeoB14613, which show a slight increasing concentration with depth (Figure 32). The other measured concentrations of cations are, except for manganese, constant with increasing depth. The profile of manganese in core GeoB14607 increased immediately from seafloor to 1 mbsf with concentration of 4.8 mg/L. Below 1 mbsf the concentration gradient reduced drastically. The concentration still increased with highest value of 6.8 mg/L. In core GeoB14611 the manganese concentration profile behaved similar the core GeoB14607. The concentration increased to 1.5 mbsf before it reduced to the value of 1.6 mg/L at 7.6 mbsf. The chloride and sodium concentrations in this working area are relatively constant with increasing depth. The concentrations of chloride vary from 19271 to 21099 mg/L, while the sodium concentrations range from 10856 to 11578 mg/L.

3.2.2.3 Working area 3

The complete results are given in Appendix SPW, III and pore water profiles for Ca, Sr, Mg, Si, K and Mn are presented in Figure 33. The concentrations of calcium and strontium in this working area show the highest values of the entire investing area. The calcium concentrations lie between 403.8 and 428.8 mg/L. The strontium concentrations vary from 7.76 to 8.53 mg/L. The dissolved silica concentrations range from 12.74 to 15.84 mg/l and show a slightly increase with depth. The magnesium concentrations range from 1281.2 to 1312.9 mg/L (Figure 33). Dissolved calcium concentration profiles slightly increase with depth. The distinction of measured values between samples collected from the outside of pits und within pits did not occur. The trends of concentration profiles of dissolved silica are not different from the other profiles from the working areas 1 and 2. The pore water profiles of manganese concentration show the same pattern like working area 2 with increasing trend to 2 mbsf and continue to

decrease after 2.5 mbsf. Only core GeoB14614 shows a constant concentration below 4.5 mbsf. The manganese concentrations range from 2.6 to 10.9 mg/L. The profiles for chloride and sodium concentrations show a fluctuation. The notedly oscillations show in cores GeoB14615 and GeoB14616. The chloride concentrations vary from 19469 to 20909 mg/L, while sodium concentrations range from 10925 to 11357 mg/L.

3.3 Comparison of planned and accomplished goals

Planned	Accomplished
Review of available data from the three working areas	accomplished
Technical preparation of the cruise	accomplished
Cruise SO207 – mapping of hydrothermal pits in three working areas with acoustic and geothermal methods; collection of gravity cores and pore water samples	accomplished
Processing and interpretation of the data after the expedition	accomplished
Modeling of the coupled transport of energy and matter in the circulation system including the geochemical data and using the modeling software.	As the pore water geochemistry gives no indication of active fluid flow the initial idea of modeling coupled heat and mass transport had to be given up.
Publication of the results	Work in progress
Final report	accomplished

4.0. Discussion and Conclusion

The investigations of the hydrothermal pits were very successful. We got enough data for a detailed analysis of the thermal system and the formulation of a most likely scenario about the creation of the pits.

The collected data supports the in part the hypothesis by Bekins et al. (2007). It is certain that seamounts act as recharge sites where cold fluids are entering the uppermost crust (Layer 2A). The measured low heat flow halos around the three seamounts are clear indicators for that. However we found no indication neither in heat flow nor in pore water geochemistry profiles for discharge sites, that means that we can detect only one limb of the hydrothermal circulation system.

The most plausible scenario for the development of the observed pits becomes obvious if one recalls the palaegographic situation of the investigation areas (Figure 34). At the time the crust of the investigation area was formed (about 15 Ma before present), it was located close to the equator (Pälike et al., 2010) within a zone of very high carbonate sediment production. Hydrothermal circulation at a ridge and ridge flanks is not confined to focussed high

temperature hydrothermal discharge at the ridge axis but occurs also as diffuse venting of warm fluids through cracks, fissures, small seamounts or basement ridges. Over these diffuse discharge sites, the geochemical dissolution process (Bekins et al., 2007) has reduced the accumulation of carbonate sediments and created a sedimentation deficit which is expressed as depression in the bathymetry. Plate movement transported the investigation areas further north and about 10 Ma years before present, they moved out of the high carbonate production belt. After that pelagic sedimentation prevailed consisting of very fine-grained muds with a very low permeability and practically stopping the outflow of hydrothermal fluids through the discharge sites. Over that last 5 Ma years pelagic sediments accumulate inside the pits and sealing them off from the exchange of fluids between upper crust and the ocean. Therefore we do not see any evidence of active fluid transport in the pore water of the cored sediments but we clearly see the still elevated temperatures in the upper crust due to its long time constant. A statistics of the pits in the working areas is shown in Figure 18 Figure 19 shows that the pit area compared to the total area of the investigation area is only about 1% but one should keep in mind that advective exchange of heat is very efficient and therefore is capable of cooling down large areas very efficiently over geological time periods. The process observed is a plausible explanation for the plate-wide depressed heat flow of the Cocos Plate. However the question of 'where does the heat escape?' still remains unsolved.

5.0 Publications and Presentations

- H. Villinger und Fahrtteilnehmer. Bericht von der SONNE-Fahrt SO207. Vortrag im Rahmen des Geophysikalischen Seminars des FB Geowissenschaften Bremen, Januar 2011.
- H. Villinger, E. Alexandrakis, P. Alt-Epping, R. Becke, R. Dziadek, K. Enneking, T. Fleischmann, K. Gaida, B. Heesemann, C. Janssen, N. Kaul, T. Pichler, M. Ruiz, F. Schmidt-Schierhorn, A. Schwab, S. Stephan, M. Zwick. SO207, Effiziente Abkühlung junger ozeanischer Kruste durch Zirkulation von Meerwasser durch Seamounts (Guatemala Becken, Ostpazifik). Statusseminar Meeresforschung mit FS SONNE 2011, Februar 2011.
- F.Schmidt-Schierhorn, N. Kaul, T. Pichler, A. Schwab, S. Stephan, H. Villinger.
 SeamountFlux: Investigation of the hydrothermal pit hypothesis. Jahrestagung der American Geophysical Union, Dezember 2011.
- T. Pichler, W. Poonchai, F. Schmidt-Schierhorn, H. Villinger. SeamountFlux: Porewater geochemistry and sediment characteristics. Jahrestagung der American Geophysical Union, Dezember 2011.
- H. Villinger, F. Schmidt-Schierhorn, N. Kaul, T. Pichler, A. Schwab, S. Stefan.
 Effiziente Abkühlung junger ozeanischer Kruste durch Zirkulation von Meerwasser durch Seamounts - SO207 (Guatemala Becken, Ostpazifik), Universität Bremen,
 Bremen. Jahrestagung der Deutschen Geophysikalischen Gesellschaft, Hamburg, März 2012.

 Villinger, H. and cruise participants. Report and preliminary results of R/V Sonne Cruise 207, Caldera – Caldera, 21 June – 13 July 2010. SeamountFlux: Efficient cooling in young oceanic crust caused by circulation of seawater through seamounts (Guatemala Basin, East Pacific Ocean). Berichte, Fachbereich Geowissenschaften, Universität Bremen, No 276, 161 pages, Bremen, 2010

6.0 References

Bekins, B. A.; Spivack, A. J.; Davis, E. E.; Mayer, L. A., 2007, Dissolution of biogenic ooze over basement edifices in the equatorial Pacific with implications for hydrothermal ventilation of the oceanic crust: Geology, v. 35; no. 8: p. 679-682

N. Dittert; R. Henrich, 2000, Carbonate dissolution in the South Atlantic Ocean: evidence from ultrastructure breakdown in Globigerina bulloides: Deep Sea Research Part I: Oceanographic Research Papers, v. 47; i 4: p. 603–620.

Ichikuni, M., 1973, Partition of strontium between calcite and solution: effect of substitution by manganese: Chem. Geol., y. li, p. 315-319

Pälike, H., Nishi, H., Lyle, M., Raffi, I., Gamage, K.,Klaus, A., and the Expedition 320/321 Scientists, 2010. Expedition 320/321 summary. In Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, Proc. IODP, 320/321: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.320321.101.2010

Rabouille, C.; J. F. Gaillard; P. Tréguer; M. A. Vincendeau, 1997, Biogenic silica recycling in surficial sediments across the Polar Front of the Southern Ocean (Indian Sector): Deep Sea Research Part II: Topical Studies in Oceanography, v. 44; i 5: p. 1151–1176

Sayles, F.L.,W.G. Deuser; J.E. Goudreau; W.H. Dickinson;T.D. Jickells; P. King, 1996, The benthic cycle of biogenic opal at the Bermuda Atlantic Time Series site: Deep Sea Research Part I: Oceanographic Research Papers, v. 43; i 4: p. 383–409

Villinger, H. and cruise participants. Report and preliminary results of R/V Sonne Cruise 207, Caldera – Caldera, 21 June – 13 July 2010. SeamountFlux: Efficient cooling in young oceanic crust caused by circulation of seawater through seamounts (Guatemala Basin, East Pacific Ocean). Berichte, Fachbereich Geowissenschaften, Universität Bremen, No 276, 161 pages, Bremen, 2010

Wilson, D.S., Hallenborg, E., Harding, A.J., and Kent, G.M., 2003. Data report: Site survey results from cruise EW9903. In Wilson, D.S., Teagle, D.A.H., Acton, G.D., et al. (Eds.), Proc. ODP, Init. Repts., 206, 1–49 [CD-ROM].

7.0 Tables

Working Area	Core	Latitude	Longitude	Water Depth (m)	Core Recovery (m)
GUATB 1	GeoB14601-1	7° 55,300' N	90° 28,800' W	3431	9.7
GUATB 1	GeoB14602-1	7° 57,670' N	90° 33,500' W	3500	9.3
GUATB 1	GeoB14603-1	7° 55,049' N	90° 30,929' W	3497	8.9
GUATB 1	GeoB14604-1	7° 56,841' N	90° 32,685' W	3425	9.4
GUATB 1	GeoB14605-1	7° 55,891' N	90° 31,809' W	3489	6.2
GUATB 1	GeoB14605-2	7° 55,891' N	90° 31,809' W	3482	2 x 0.4
GUATB 1	GeoB14619-1	7° 57,970' N	90° 33,796' W	3512	7.4
GUATB 1	GeoB14620-1	7° 57,572' N	90° 33,656' W	3505	7.67
GUATB 1	GeoB14621-1	7° 58,259' N	90° 33,887' W	3448	9.82
GUATB 1	GeoB14622-1	7° 58,155' N	90° 33,854' W	3473	8.39
GUATB 1	GeoB14623-1	7° 58,090' N	90° 33,833' W	3484	7
GUATB 1	GeoB14624-1	7° 57,885' N	90° 33,766' W	3508	10.64
GUATB 1	GeoB14625-1	7° 57,885' N	90° 33,766' W	3506	8
GUATB 2	GeoB14607-1	7° 13,606' N	91° 19,344' W	3733	7
GUATB 2	GeoB14608-1	7° 14,982' N	91° 26,396' W	3760	8.1
GUATB 2	GeoB14608-2	7° 14,520' N	91° 26,350' W	3748	3 x 0.4
GUATB 2	GeoB14609-1	7° 15,990' N	91° 28,652' W	3717	6.6
GUATB 2	GeoB14610-1	7° 16,014' N	91° 17,460' W	3763	6.1
GUATB 2	GeoB14611-1	7° 16,068' N	91° 18,696' W	3788	7.8
GUATB 2	GeoB14612-1	7° 15,130' N	91° 26,260' W	3656	10.4
GUATB 2	GeoB14613-1	7° 15,049' N	91° 26,370' W	3657	7.3
GUATB 3	GeoB14614-1	6° 38,137' N	91° 54,775' W	3637	9
GUATB 3	GeoB14615-1	6° 38,399' N	91° 54,455' W	3720	7
GUATB 3	GeoB14616-1	6° 38,472' N	91° 54,374' W	3715	7.33
GUATB 3	GeoB14617-1	6° 39,565' N	91° 53,104' W	3628	9.02

Table 1. Station overview for the three different working areas WA 1 (GUATB1), WA 2 (GUATB2) and WA 3 (GUATB3).

Core	Depth (cm)	δD (‰)	δ ¹⁸ O (‰)
GeoB146019-1	8	-1.19	0.4
	32	-2.49	0.0
	38	-1.05	0.3
	46	-0.56	-0.3
	83	-1.43	0.7
	118	-2.45	0.1
	145	-1.06	0.3
	151	-1.15	0.3
	166	-1.63	0.1
	218	0.07	0.6
	258	1.87	-0.7
	294	-0.80	-0.5
	325	-0.02	-0.2
	358	-0.74	0.3
	394	-2.80	-0.1
	428	-0.82	-0.3
	467	-1.98	0.0
	531	0.53	-0.7
	567	-2.22	0.2
	632	0.60	-0.5
	657	1.27	-0.8
	671	1.08	-0.1
	732	1.09	0.4
GeoB146021-1	20	-1.35	-0.1
	68	-2.63	0.2
	114	-1.68	0.1
	164	-0.48	-0.2
	214	-0.91	0.3
	264	1.52	0.1
	314	1.11	0.0
	364	-0.81	0.2
	414	-1.32	0.1
	464	0.12	-0.3
	514	-1.68	0.8
	564	-0.76	0.5
	614	-0.12	-0.3
	664	-0.43	0.1
	714	0.39	-0.2
	764	-0.87	0.0
	814	-0.04	0.4
	864	-1.15	-0.1

Table 2. ²H and ¹⁸O isotope in pore waters from selected cores

Core	Depth (cm)	δD (‰)	δ ¹⁸ Ο (‰)
C D14(22.1	4	0.61	0.70
GeoB14623-1	4	0.61	-0.78
	107	1.00	-0.19
	127	1.52	-0.84
	1//	0.77	-0.05
	227	0.67	-0.30
	277	1.16	-0.28
	327	1.22	-0.03
	377	0.38	0.08
	427	0.45	-0.20
	477	1.82	0.53
	527	2.45	-0.89
	577	1.12	0.05
	627	1.06	0.45
	640	0.88	0.35
	677	4.17	0.04
GeoB14625-1	30	-0.97	0.30
	80	-1.25	0.30
	108	-0.54	0.20
	130	-0.37	0.43
	180	0.82	0.08
	230	0.26	0.32
	280	1.22	0.09
	330	0.99	0.15
	380	1.95	-0.14
	430	0.92	0.13
	480	2.04	-0.06
	530	1.59	-0.09
	580	0.69	0.11
	630	1.13	0.26
	680	1.88	0.03
	730	1.50	-0.02
	780	1.66	0.01

8.0 Figures

Figure 1. Location of the investigation area off Costa Rica and overview of the three working areas WA 1 to WA 3.

Figure 2. Location of seismic profiles from cruise SO207 (solid blue line) and Ewing cruise EW9903 (solid red line). Detailed maps of both seismic survey can be found in the cruise report of SO207 (Villinger et al., 2010) and in Wilson et al. (2003).

Figure 3. Bathymetry in working area WA 1. Rectangle I and II mark areas in the figure where the sediment thickness (see Appendix G) and the heat flow (see Figure 4) are shown in detail. Heat flow profiles are annotated in blue with small types a, b and c.

Figure 4. Measured heat flow values in working area WA 1. The small types refer to the profiles shown in Figure 3.

Figure 5. Parasound-profile of seismic profile a (see Figure 3). Note the reversed orientation of the section.

Figure 6. Details of seismic profiles crossing the pit in WA 1.

Figure 7. Heat flow and seismic profile a across a series of pits in WA 1. For location of profile see Figure 3.

Top: Measured heat flow in blue and calculated temperature at the sedimentbasement boundary in red.

Bottom: Seismic profile over three pits. Green line marks the intersection with profile b (see Figure 3. Yellow lines represent sediment/water boundary, beginning of the carbonate-rich sediment and sediment-basement boundary (from top to bottom).

Figure 8. Seismic and heat flow profile towards a seamount in WA 1. For location of profile c see Figure 3. Top: Measured heat flow in blue and calculated temperature at the sediment-basement boundary in red. Bottom: Seismic section.

Figure 9. Bathymetry in working area WA 2. Rectangle I and II mark areas in the figure where the sediment thickness (see Appendix Geophysics) and the heat flow (see Figure 10) are shown in detail. Heat flow profiles are annotated in yellow with small types d to g.

Figure 10. Measured heat flow values in working area WA 2. The small types refer to the profiles shown in Figure 9.

Figure 11. Heat flow profile HF1033 across a small pit (profile f in Figure 9) located at the southeastern corner of WA 2.

Figure 12. Heat flow and seismic profile 'e' across a series of pits in WA 2. For location of profile see Figure 9.

Top: Measured heat flow in blue and calculated temperature at the sedimentbasement boundary in green.

Bottom: Seismic profile over three pits. Yellow lines represent sediment/water boundary, beginning of the carbonate-rich sediment and sediment-basement boundary (from top to bottom).

Figure 13. Bathymetry in working area WA 3. Rectangle I and II mark areas in the figure where the sediment thickness (see Appendix G) and the heat flow (see Figure 16) are shown in detail. Heat flow profile is annotated in yellow with letter h.

Figure 14. Measured heat flow values in working area WA 1. The small types refer to the profiles shown in Figure 13.

Figure 16. Heat flow and seismic profile 'e' across a series of pits in WA 2. For location of profile see Figure 3.

Top: Measured heat flow in blue and calculated temperature at the sediment-basement boundary in green.

Bottom: Seismic profile over three pits. Yellow lines represent sediment/water boundary, beginning of the carbonate-rich sediment and sediment-basement boundary (from top to bottom).

Figure 17. Donut-shaped seamount between working area 2 and 3. White filled circles show locations of heat flow measurements on a profile towards the seamount. The measured values are plotted above. The seamount can be found in the southwestern corner of the map shown in Figure 9.

Figure 18. Statistics of the pit area of all the pits identified in WA 1, WA 2 and WA 3.

Figure 20. Ca pore water concentration profiles and calcium carbonate content in working area 1. The small red dots show the values of bottom water.

Figure 21. Ca pore water concentration profiles and calcium carbonate content in working area 1 - transect across a pit. The small red dots show the values of bottom water.

Figure 22. Ca pore water concentration profiles and calcium carbonate content in working area 2. The small red dots show the values of bottom water.

Figure 23. Ca pore water concentration profiles and calcium carbonate content in working area 2 transect across a pit. The small red dots show the values of bottom water.

Figure 24. : Ca pore water concentration profiles and calcium carbonate content in working area 3. The small red dots show the values of bottom water.

Figure 25. Pressure-void ration diagrams of tested sediment samples. The blue diagram shows sample taken inside of the pit and the red diagram sample taken outside of the pit.

Figure 26. The well-preserved test of planktonic Foraminifera of core GeoB 14619 in 6,71 m depth. Pictures in the red rectangle show the surface textures of the test in 4000 times magnified and in the green 8000 times magnified.

Figure 27. Ca, Sr, Mg, Si, K and Mn pore water concentration profiles in working area 1. The small red dots show the values of bottom water. O = core taken from the outside of pits; I = core taken from the inside of pits

Figure 28. Ca, Sr, Mg, Si, K and Mn pore water concentration profiles in working area 1. The small red dots show the values of bottom water. Core GeoB 14618 was collected from the top of seamount. O = core taken from the outside of pits; S = core taken on slope of pits; I = core taken from the inside of pits.

Figure 29. Detailed bathymetry of The Pit (WA 1) and location of heat flow measurements and gravity cores.

Figure 30 Profiles for δ 2H and δ 18O values in pore water from four cores, which were taken along a transect across the pit slope. The orange profile GeoB14621 represents the core collected from the outside of the pit, while the green profile GeoB14623 represents the core taken on the slope and the two blue profiles GeoB14619 and GeoB14625 represent the cores retrieved within the pit. The red dots show the values of bottom seawater.

Figure 31. Ca, Sr, Mg, Si, K and Mn pore water concentration profiles in working area 2. Transect across a pit. The small red dots show the values of bottom water. O = core taken from the outside of pits; S = core taken on slope of pits; I = core taken from the inside of pits.

Figure 32. Ca, Sr, Mg, Si, K and Mn pore water concentration profiles in working area 3. The small red dots show the values of bottom water. O = core taken from the outside of pits; I = core taken from the inside of pits.

Figure 33. Ca, Sr, Mg, Si, K and Mn pore water concentration profiles in working area 2. The small red dots show the values of bottom water. Core GeoB 14618 was collected from the top of seamount. O = core taken from the outside of pits; S = core taken on slope.

Cessation of high carbonate sedimentation and dissolution; pelagic sediments seal the the pits.

Active hydrothermal venting and dissolution of carbonates continued until site drifted out of high carbonate productivity zone. Dissolution of CaCO₃ by warm hydrothermal diffuse outflow close to ridge.

Figure 34. Model of the development of hydrothermal pits.

Appendix Geophysik

für das Projekt

SO207 – SEAMOUNTFLUX

Effiziente Abkühlung junger ozeanischer Kruste durch Zirkulation von Meerwasser durch Seamounts (Guatemala Becken, Ostpazifik)

Förderkennzeichen 03G0207A

Zeitraum 1.3.2010 – 31.4.2012

Prof. Dr. H. Villinger

Prof. Dr. T. Pichler

Fachbereich Geowissenschaften

Universität Bremen

Bremen

Figure A 2. Calculated sediment thickness in WA 2.

Figure A 3. Calculated sediment thickness in working area 3.

Figure A 9. Heat flow values along profile HF1036.

- 7 -

- 8 -

Figure A 12. Heat flow values along profile HF1039.

Profile	StartEEN	ENJEEN	StartTi	am	EndTin			StartDocitio	n[] at/]	luc	ľ	ndPositio	nll at/l	luc	Dief[nm]	#Shots
GUATB01	26	1318	23.06.2010	22:25:34	24.06.2010	01:17:53	_∞	6.7510	06-	20.1660	"∞	1.4900	6-	30.7350	181.61	1292
GUATB02	1467	2126	24.06.2010	01:37:44	24.06.2010	03:05:36	ω	1.5230	-90	32.0050	œ	7.2770	-90	32.8250	5.88	659
GUATB03	2399	3662	24.06.2010	03:42:00	24.06.2010	06:30:58	œ	6.0340	-90	34.3800	2	58.3440	-90	25.9830	11.4	1263
GUATB04	3781	4428	24.06.2010	06:46:50	24.06.2010	08:13:07	~	57.4330	-90	26.4080	7	53.5440	-90	30.7320	5.79	647
GUATB05	4623	6129	24.06.2010	08:39:07	24.06.2010	11:59:56	2	53.7130	-90	29.5930	8	3.3030	-90	38.9800	13.39	1506
GUATB08	6325	6860	28.06.2010	21:43:58	28.06.2010	22:55:40	~	14.4400	-91	20.3870	7	14.1830	-91	25.1400	5.4	535
GUATB09	6863	7639	28.06.2010	22:55:40	29.06.2010	00:39:08	~	14.1670	-91	25.0790	7	16.8690	-91	31.4310	164.98	776
GUATB10	7683	8056	29.06.2010	00:45:00	29.06.2010	01:34:45	~	17.2220	-91	31.4410	7	19.2580	-91	28.7530	3.38	373
GUATB11	8074	9605	29.06.2010	01:37:09	29.06.2010	05:01:18	~	19.2960	-91	28.6060	2	15.3840	-91	15.4630	13.69	1531
GUATB12	9818	10551	29.06.2010	05:29:42	29.06.2010	07:07:27	2	16.0580	-91	15.5040	7	16.1370	-91	22.1200	6.59	733
GUATB13	10552	11205	29.06.2010	07:07:35	29.06.2010	08:34:40	2	16.1420	-91	22.1260	7	20.5940	-91	25.7880	5.79	653
GUATB14	11269	11756	29.06.2010	08:43:12	29.06.2010	09:48:08	2	21.0370	-91	25.4310	7	20.3450	-91	21.1520	4.44	487
GUATB15	11845	12918	29.06.2010	10:00:00	29.06.2010	12:23:06	2	20.0980	-91	20.6850	7	13.7140	-91	27.9180	9.64	1073
GUATB16	12975	13365	01.07.2010	20:14:42	01.07.2010	21:06:42	~	14.6280	-91	30.0810	7	16.8970	-91	27.5600	3.38	390
GUATB17	13569	14089	01.07.2010	21:34:00	01.07.2010	22:43:15	~	16.5410	-91	25.8670	7	19.5510	-91	22.4540	3.11	520
GUATB18	14405	14756	01.07.2010	23:25:23	02.07.2010	00:12:11	~	18.3290	-91	21.2160	7	16.3760	-91	23.5270	3.02	351
GUATB19	14903	15287	02.07.2010	00:31:47	02.07.2010	01:23:00	2	15.6720	-91	22.9280	7	18.0190	-91	20.3690	3.45	384
GUATB20	15399	15765	02.07.2010	01:37:56	02.07.2010	02:26:44	2	18.1570	-91	20.4640	7	14.9960	-91	20.0300	3.19	366
GUATB21	15909	16383	02.07.2010	02:45:56	02.07.2010	03:49:09	~	15.0400	-91	20.0460	7	17.8240	-91	16.7670	4.29	474
GUATB22	16557	16982	02.07.2010	04:12:21	02.07.2010	05:09:01	2	17.1310	-91	16.3070	7	14.6320	-91	19.0130	3.67	425
GUATB24	17068	17829	03.07.2010	17:15:52	03.07.2010	18:57:21	9	41.0010	-91	53.2150	9	36.5020	-91	58.3260	6.84	761
GUATB25	17992	18742	03.07.2010	19:19:05	03.07.2010	20:59:06	9	35.7300	-91	57.3780	9	40.1790	-91	52.4240	6.64	750
GUATB26	18838	19613	03.07.2010	21:11:54	03.07.2010	22:55:22	9	39.6050	-91	51.9490	9	35.1100	-91	57.0890	6.86	775
GUATB27	19793	20554	03.07.2010	23:19:23	04.07.2010	01:00:51	9	34.4060	-91	56.2530	9	39.0370	-91	51.2370	6.81	761
GUATB28	20602	20816	04.07.2010	01:07:15	04.07.2010	01:35:48	9	38.9270	-91	50.8160	9	37.5130	-91	49.5110	1.94	214
GUATB29	20865	21639	04.07.2010	01:42:20	04.07.2010	03:25:32	9	37.1290	-91	49.6220	9	32.5230	-91	54.7190	6.9	774
GUATB32	21800	22364	09.07.2010	01:03:04	09.07.2010	02:18:16	~	57.6400	-90	35.9170	8	0.9300	-90	32.1150	5.01	564
GUATB33	22545	23105	09.07.2010	02:42:28	09.07.2010	03:57:05	2	59.8620	-90	31.2930	7	56.6040	-90	34.9890	4.51	560
GUATB34	23325	23886	09.07.2010	04:26:25	09.07.2010	05:41:13	~	55.7860	-90	34.0370	7	59.0790	-90	30.3050	4.96	561
GUATB35	24081	24669	09.07.2010	06:07:14	09.07.2010	07:25:39	2	58.0720	-90	29.3230	7	54.6360	-90	33.1790	5.15	588
GUATB36	24818	25398	09.07.2010	07:45:31	09.07.2010	09:02:51	~	53.9170	-90	32.3860	7	57.2380	-90	28.6290	5	580
GUATB37	25672	26383	09.07.2010	09:39:24	09.07.2010	11:14:12	~	57.1300	06-	28.7250	7	50.7830	06-	28.8650	6.36	711
GUATB38	26500	26734	09.07.2010	11:29:48	09.07.2010	12:01:00	~	50.7480	-90	28.7370	~	52.6900	- 06	29.3400	2.04	234

Table 1. Seismic profiles shot during SO207

Table 2. Measured heat flow values.

no	Latitude	Longitude	Depth [m]	Date	no Sensors used	TGrad [°C/km]	Mean TC [W/mK]	Heat Flow [mW/m²]
	HF1030							
1	07 53.6037	-90 29.5214	3421	2010/06/24	21	21.13	n/a	16.5
2	07 53.9987	-90 29.8642	3428	2010/06/25	21	24.12	0.80	19.4
3	07 54.3136	-90 30.1847	3429	2010/06/25	21	28.46	n/a	22.2
4	07 54.5928	-90 30.5063	3466	2010/06/25	21	58.41	0.74	43.3
5	07 54.8615	-90 30.7679	3417	2010/06/25	21	39.12	n/a	30.5
6	07 55.1211	-90 31.0246	3502	2010/06/25	21	101.20	0.78	79.4
7	07 55.4144	-90 31.3111	3427	2010/06/25	21	43.09	n/a	33.6
8	07 55.6947	-90 31.5732	3426	2010/06/25	21	44.83	0.78	35.3
9	07 55.9132	-90 31.7382	3481	2010/06/25	21	166.87	n/a	130.2
10	07 56.1978	-90 32.0194	3428	2010/06/25	21	46.10	0.73	33.9
11	07 56.4383	-90 32.2718	3430	2010/06/25	21	47.39	n/a	37.0
12	07 56.6805	-90 32.5521	3432	2010/06/25	21	54.37	0.78	42.6
13	07 56.897	-90 32.7371	3431	2010/06/26	21	51.17	0.79	40.6
14	07 57.2452	-90 33.0862	3440	2010/06/26	21	63.02	n/a	49.2
15	07 57.5435	-90 33.3819	3466	2010/06/26	21	95.77	0.77	/3.5
16	07 57.7191	-90 33.5789	3501	2010/06/26	21	1/1.38	n/a	133.7
1/	07 57.7285	-90 33.5605	3501	2010/06/26	21	168.20	0.78	131.2
18	07 57.9723	-90 33.3745	3490	2010/06/26	21	137.02	n/a	106.9
19	07 57.9703	-90 33.7959	3500	2010/06/26	21	390.61	n/a	304.7
20	07 58.1421	-90 34.0574	3443	2010/06/27	21	93.47	n/a	72.9
21	07 58.3924	-90 34.2513	3448	2010/06/27	21	133.64	0.73	97.3
	07 58.7007	-90 34.5472	3452	2010/06/27	21	154.0Z	n/a	120.1
	HF1032							
1	07 16 0354	-91 15 5233	3690	2010/06/29	10	34 38	0.75	25.8
2	07 16 0433	-91 16 0469	3698	2010/06/30	10	33 16	n/a	25.9
3	07 16 0678	-91 16 5641	3674	2010/06/30	21	54 73	0.79	43.3
4	07 16 0602	-91 17 1342	3748	2010/06/30	21	197.38	0.78	154.3
5	07 16.0113	-91 17.4581	3717	2010/06/30	21	262.65	n/a	204.9
6	07 15 9985	-91 17.6758	3673	2010/06/30	21	80.46	n/a	62.8
7	07 16.1547	-91 18.1677	3654	2010/06/30	21	85.75	0.80	68.4
8	07 16.2489	-91 18.6706	3714	2010/06/30	21	78.50	0.79	62.5
9	07 16.0667	-91 18.6977	3771	2010/06/30	21	375.02	0.77	289.0
10	07 16.3216	-91 19.2613	3729	2010/06/30	21	187.09	0.77	144.9
11	07 16.6295	-91 19.6756	3680	2010/06/30	21	60.53	n/a	47.2
12	07 16.7933	-91 20.1964	3696	2010/06/30	21	56.32	0.79	44.4
13	07 17.1457	-91 20.8298	3724	2010/07/01	21	366.54	n/a	285.9
14	07 17.1133	-91 21.3642	3748	2010/07/01	21	228.69	n/a	178.4
15	07 17.2153	-91 21.8536	3693	2010/07/01	21	90.64	n/a	70.7
16	07 17.4615	-91 22.5828	3756	2010/07/01	21	184.24	0.78	143.8
17	07 17.6268	-91 22.5999	3733	2010/07/01	21	91.93	n/a	71.7
18	07 17.6602	-91 23.3012	3721	2010/07/01	21	155.38	n/a	121.2
19	07 17.6933	-91 23.8704	3657	2010/07/01	10	79.56	0.79	62.2
20	07 17.9081	-91 24.245	3711	2010/07/01	21	213.40	0.79	168.2
21	07 18.1275	-91 24.8348	3641	2010/07/01	20	67.39	n/a	52.6
22	07 18 2721	-91 25 4212	3624	2010/07/01	21	63.14	0.80	50.8

Table 2.	Measured	heat flow	values.
----------	----------	-----------	---------

HF1033 1 7 15.1919 -91.26.20 3659 2010/07/02 21 81.97 n/a 63.9 2 7 15.1096 -91.26.206 3667 2010/07/02 21 78.03 0.79 62.1 3 7 15.0287 -91.26.2969 3720 2010/07/02 21 38.15 n/a 107.8 5 714.8376 -91.26.4546 3755 2010/07/02 21 445.12 n/a 347.2 6 714.8376 -91.26.526.3 3744 2010/07/02 21 440.14 n/a 317.6 8 714.746 -91.26.526.3 3744 2010/07/02 21 240.74 n/a 317.6 10 714.4564 -91.26.574 331.2 2010/07/02 21 247.32 n/a 169.5 11 714.4614 -91.26.574 3633 2010/07/04 21 169.87 n/a 132.5 2 6.38.754 -91.53.4326 3618 2010/07/04 21	no	Latitude	Longitude	Depth [m]	Date	no Sensors used	TGrad [°C/km]	Mean TC [W/mK]	Heat Flow [mW/m²]
1 7 15 1919 -91 26.16 3659 2010/07/02 21 81.97 n/a 63.2 2 7 15 1096 -91 26.266 367 2010/07/02 21 78.03 0.79 62.1 3 7 15 0287 -91 26.2969 3720 2010/07/02 21 38.15 n/a 62.6 4 7 14.8376 -91 26.3415 3764 2010/07/02 21 429.241 0.78 228.7 6 7 14.8376 -91 26.4546 3755 2010/07/02 21 440.14 n/a 347.6 8 7 14.7166 -91 26.624 3714 2010/07/02 21 400.14 0.78 312.8 9 7 14.464 -91 26.624 3714 2010/07/02 21 217.32 n/a 169.5 10 714.5935 -91 26.724 3633 2010/07/02 20 14.64 n/a 62.0 17 714.4614 -91 26.7574 3613 2010/07/04 21 169.87 n/a 132.5 1 6 39.466 -91 53.4325 3618 2010/07/04 <th></th> <th>HF1033</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>		HF1033							
2 7 15.1096 -91 26.206 3667 2010/07/02 21 78.03 0.79 62.1 4 7 14.8028 -91 26.3974 3762 2010/07/02 21 80.27 n/a 62.6 4 7 14.8304 -91 26.3974 3762 2010/07/02 21 428.15 n/a 107.8 5 7 14.8304 -91 26.5452 3747 2010/07/02 21 445.12 n/a 317.6 6 7 14.7164 -91 26.6525 3744 2010/07/02 21 400.14 0.78 312.8 9 7 14.7164 -91 26.624 3617 2010/07/02 20 84.64 n/a 206.1 10 7 14.5266 -91 26.7274 3633 2010/07/02 20 81.64 n/a 89.7 13 7 14.4041 -91 26.7274 3612 2010/07/02 20 81.64 n/a 93.3 14 6 39.466 -91 53.1856 3623 2010/07/04 21 157.44 n/a 132.5 2 6 38.754 -91 53.3825 3618 2010/07/	1	7 15.1919	-91 26.16	3659	2010/07/02	21	81.97	n/a	63.9
3 7 16.0287 -91 26 2969 3720 201007/02 21 138.15 n/a 62.6 4 7 14.9348 -91 26.3415 3762 201007/02 21 232.41 0.78 228.7 6 7 14.8304 -91 26.5192 3747 201007/02 21 445.12 n/a 347.2 7 7 14.7766 -91 26.5192 3747 201007/02 21 440.14 n/a 347.2 7 7 14.7766 -91 26.624 3747 201007/02 21 440.14 n/a 206.1 10 7 14.5935 -91 26.624 3714 201007/02 20 84.64 n/a 66.0 12 714.4614 -91 26.7574 3633 201007/02 7 119.62 n/a 93.3 HF1034 1 6 39.466 -91 53.1856 3623 201007/04 21 169.87 n/a 132.5 2 6 38.1205 -91 50.1007/04 21 157.44 n/a 122.5 2 6 38.1205 -91 53.1826 3623 2010	2	7 15.1096	-91 26.206	3667	2010/07/02	21	78.03	0.79	62.1
4 7 14.9348 -91 26.3415 3764 2010/07/02 21 138.15 n/a 107.8 5 714.8378 -91 26.65974 3755 2010/07/02 21 245.11 n/a 347.2 7 7.14.7746 -91 26.6525 3747 2010/07/02 21 445.12 n/a 347.2 9 7.14.7164 -91 26.6525 3744 2010/07/02 21 240.14 0.78 312.8 9 7.14.5286 -91 26.6525 3714 2010/07/02 20 84.64 n/a 169.5 11 7.14.5286 -91 26.7274 3633 2010/07/02 20 115.02 n/a 89.3 13 7.14.4041 -91 26.8196 3608 2010/07/02 20 115.02 n/a 89.3 14 6.39.466 -91 53.1856 3623 2010/07/04 21 157.44 n/a 132.5 2 6.39.466 -91 53.1856 3623 2010/07/04 21 157.44 n/a 132.5 2 6.38.642 -91 53.1856 3623 20	3	7 15.0287	-91 26.2969	3720	2010/07/02	21	80.27	n/a	62.6
5 7 14.8878 -91 26.3974 3762 201007/02 21 292.41 0.78 228.7 7 7 14.7746 -91 26.5192 3747 201007/02 21 440.14 0.78 317.6 8 7 14.7746 -91 26.525 3744 201007/02 21 440.14 0.78 312.8 9 7 14.4645 -91 26.624 3714 201007/02 21 264.24 n/a 169.5 11 7 14.5266 -91 26.624 3714 201007/02 20 84.64 n/a 66.0 12 7 14.4614 -91 26.7574 3633 201007/02 20 115.02 n/a 89.7 13 7 14.4614 -91 25.3425 3618 201007/04 21 157.44 n/a 122.8 2 6 38.754 -91 53.4325 3618 201007/04 21 144.97 0.79 91.2 4 6 38.6429 -91 54.0975 3624 201007/04 21 144.96 0.78 112.2 2 6 38.6429 -91 54.4075 3624 201007/04	4	7 14.9348	-91 26.3415	3764	2010/07/02	21	138.15	n/a	107.8
6 7 71 7	5	7 14.8878	-91 26.3974	3762	2010/07/02	21	292.41	0.78	228.7
/ 14.7/46 -91 26.5192 3744 2010/07/02 21 400.14 0.78 312.8 9 7 14.645 -91 26.624 3714 2010/07/02 21 264.24 n/a 206.1 10 7 14.5935 -91 26.624 3714 2010/07/02 21 274.2 n/a 266.1 10 7 14.5935 -91 26.624 3633 2010/07/02 20 84.64 n/a 266.1 12 7 14.4614 -91 26.7274 3617 2010/07/02 20 115.02 n/a 89.7 13 7 14.4041 -91 26.8196 3608 2010/07/04 21 169.87 n/a 132.5 2 6 38.754 -91 53.4325 3618 2010/07/04 21 114.97 0.79 91.2 3 6 38.754 -91 54.3325 3618 2010/07/04 21 145.85 0.78 113.9 6 38.6429 -91 54.3325 3618 2010/07/04 21 145.85 0.78 113.9 6 38.6429 -91 54.3437 3642 2010/07/04 21	6	7 14.8304	-91 26.4546	3755	2010/07/02	21	445.12	n/a	347.2
8 7 14.7164 -91 20.525 3744 2010/07/02 21 240.14 0.76 312.5 9 7 14.645 -91 26.624 367 2010/07/02 21 247.32 n/a 169.5 11 7 14.5266 -91 26.7574 3633 2010/07/02 20 84.64 n/a 66.0 12 714.4614 -91 26.7574 3637 2010/07/02 7 119.62 n/a 93.3 HF1034 1 639.466 -91 53.1856 3623 2010/07/04 21 169.87 n/a 132.5 2 638.6429 -91 53.4325 3618 2010/07/04 21 157.44 n/a 122.8 3 638.6429 -91 54.0378 2010/07/04 21 76.68 n/a 56.5 6 38.6429 -91 54.3379 799 2010/07/04 21 142.77 0.78 113.9 7 9154.3437<	/	/ 14.//46	-91 26.5192	3/4/	2010/07/02	21	407.14	n/a	317.6
9 7 14.649 -91.26.624 3714 2010/07/02 21 217.32 n/a 169.5 11 7 14.5266 -91.26.7274 3633 2010/07/02 20 84.64 n/a 69.0 12 7 14.4614 -91.26.7574 3617 2010/07/02 20 115.02 n/a 93.3 HF1034 HF1034 1 6 39.466 -91.53.1856 3623 2010/07/04 21 169.87 n/a 132.5 2 6 38.754 -91.53.4325 3618 2010/07/04 21 157.44 n/a 122.8 3 6 38.754 -91.54.0375 3624 2010/07/04 21 168.8 n/a 56.5 6 38.629 -91.54.0364 3673 2010/07/04 21 145.85 0.78 113.9 7 6.38.4334 -91.54.3164 3673 2010/07/04 21 142.7 0.78 112.2 6 38.2503 -91.55.43837 3709 20	8	7 14.7164	-91 26.5525	3/44	2010/07/02	21	400.14	0.78	312.8
10 7 14.5266 -91 26.7274 3633 2010/07/02 20 84.64 n/a 66.0 12 7 14.4614 -91 26.7574 3617 2010/07/02 20 115.02 n/a 89.7 13 7 14.4041 -91 26.8196 3608 2010/07/02 7 119.62 n/a 83.3 HF1034 Image: state stat	9	7 14.040	-91 20.024	3714	2010/07/02	21	204.24	n/a	200.1
11 7 14.3200 -91 26.7574 3637 2010/07/02 20 64.64 1/ra 66.0 13 7 14.4014 -91 26.8794 3617 2010/07/02 7 119.62 n/a 89.7 13 7 14.4041 -91 26.8196 3608 2010/07/02 7 119.62 n/a 89.7 14 6 39.466 -91 53.4825 3618 2010/07/04 21 157.44 n/a 132.5 2 6 38.754 -91 53.4325 3618 2010/07/04 21 156.744 n/a 122.8 3 6 38.6429 -91 54.0975 3624 2010/07/04 21 76.68 n/a 59.8 5 6 38.4534 -91 54.3379 3709 2010/07/04 21 145.65 0.78 113.9 7 6 38.2503 -91 54.3379 3709 2010/07/04 21 142.77 0.78 112.2 8 6 38.2503 -91 55.3142 3615 2010/07/05 20 12.74 n/a 19.93 10 6 37.8331 -91 54.4848 3538 <td>10</td> <td>7 14.5935</td> <td></td> <td>3007</td> <td>2010/07/02</td> <td>21</td> <td>217.32</td> <td>n/a</td> <td>169.5</td>	10	7 14.5935		3007	2010/07/02	21	217.32	n/a	169.5
12 7 14.4014 -91 26.8196 3608 2010/07/02 7 119.62 n/a 93.3 HF1034 1 6 39.466 -91 53.1856 3623 2010/07/04 21 169.87 n/a 132.5 2 6 39.1205 -91 53.3425 3618 2010/07/04 21 157.44 n/a 122.8 3 6 38.754 -91 53.325 3616 2010/07/04 21 176.68 n/a 159.8 4 6 38.6429 -91 54.0975 3624 2010/07/04 21 76.68 n/a 59.8 5 6 38.4334 -91 54.3379 3709 2010/07/04 21 145.85 0.78 113.9 7 6 38.2503 -91 54.3488 5358 2010/07/04 21 140.06 n/a 109.3 10 6 37.8954 -91 55.3142 3615 2010/07/05 20 12.74 n/a 9.9 12 6 38.692 -91 55.7378 3611 2010/07/05 21 40.05 n/a 11.2 8 6 36.9838 -91	10	7 14.5200	-91 20.7274	2617	2010/07/02	20	04.04	n/a	80.7
HF1034 HF1034 1 6 39.466 -91 53.4325 3618 2010/07/04 21 169.87 n/a 132.5 2 6 39.1205 -91 53.4325 3618 2010/07/04 21 157.44 n/a 122.8 3 6 38.754 -91 53.832 3616 2010/07/04 21 114.97 0.79 91.2 4 6 38.6429 -91 54.0375 3624 2010/07/04 21 76.68 n/a 59.8 5 6 38.5564 -91 54.3379 3709 2010/07/04 21 142.85 0.78 113.9 7 6 38.2503 -91 54.3379 3709 2010/07/04 21 142.77 0.78 112.2 8 6 38.2503 -91 55.3142 3615 2010/07/05 12 2.21 n/a 1.7 13 6 36.9485 -91 55.9154 3560 2010/07/05 12 2.01 n/a 1.7 13 6 36.9425 -91 56.0333 3202 2010/07/05 </td <td>12</td> <td>7 14.4014</td> <td>-91 20.7574</td> <td>3608</td> <td>2010/07/02</td> <td>20</td> <td>110.02</td> <td>n/a</td> <td>09.7</td>	12	7 14.4014	-91 20.7574	3608	2010/07/02	20	110.02	n/a	09.7
HF1034 1 6 39.466 -91 53.1856 3623 2010/07/04 21 169.87 n/a 132.5 2 6 39.1205 -91 53.4325 3618 2010/07/04 21 157.44 n/a 122.8 3 6 38.6429 -91 54.0975 3624 2010/07/04 21 76.68 n/a 59.8 5 6 38.6564 -91 54.2156 3215 2010/07/04 21 74.68 70.78 113.9 7 6 38.277 -91 54.3379 3709 2010/07/04 21 142.77 0.78 112.2 8 6 38.2503 -91 54.3367 3646 2010/07/04 21 142.77 0.78 112.2 8 6 38.277 -91 55.3142 3615 2010/07/05 12 2.74 n/a 9.9 10 6 37.8331 -91 55.7378 3611 2010/07/05 12 1.74 n/a 1.7 13 6 36.6302 -91 55.5143 3560 2010/07/05 1		/ 14.4041	-91 20.0190	3000	2010/07/02	1	119.02	n/a	93.5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		HF1034							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	6 39.466	-91 53.1856	3623	2010/07/04	21	169.87	n/a	132.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	6 39.1205	-91 53.4325	3618	2010/07/04	21	157.44	n/a	122.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	6 38.754	-91 53.832	3616	2010/07/04	21	114.97	0.79	91.2
5 6 38.5564 -91 54.1364 3673 2010/07/04 20 72.48 n/a 56.5 6 6 38.4334 -91 54.2156 3215 2010/07/04 21 145.85 0.78 113.9 7 6 38.2707 -91 54.3379 3709 2010/07/04 21 142.77 0.78 112.2 8 6 38.2503 -91 54.4367 3646 2010/07/04 12 49.69 0.78 38.8 10 6 37.8331 -91 55.3142 3615 2010/07/05 20 12.74 n/a 9.9 12 6 37.0952 -91 55.7378 3611 2010/07/05 21 40.05 n/a 11.2 14 6 36.842 -91 56.0333 3520 2010/07/05 21 19.54 n/a 15.2 16 6 36.5983 -91 57.0449 3603 2010/07/05 21 20.45 0.79 16.2 18 6 35.5346 -91 57.5613 3608 2010/07/05 21 34.33 n/a 26.8 19 6 35.1842 -91 57.8663 3605 2010/0	4	6 38.6429	-91 54.0975	3624	2010/07/04	21	76.68	n/a	59.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	6 38 5564	-91 54.1364	3673	2010/07/04	20	72.48	n/a	56.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	6 38.4334	-91 54.2156	3215	2010/07/04	21	145.85	0.78	113.9
8 6 38 2503 -91 54.4367 3646 2010/07/04 21 140.06 n/a 109.3 10 6 37.8331 -91 54.8488 3538 2010/07/05 20 12.74 n/a 9.9 12 6 37.0952 -91 55.7378 3611 2010/07/05 19 2.21 n/a 1.7 13 6 36.9485 -91 55.9154 3560 2010/07/05 21 40.05 n/a 31.2 14 6 36.842 -91 56.0333 3520 2010/07/05 21 19.54 n/a 15.2 16 6 36.5983 -91 56.6544 3595 2010/07/05 21 34.33 n/a 26.8 17 6 36.3022 -91 57.8663 3605 2010/07/05 21 34.33 n/a 28.1 20 6 35.1842 -91 57.8663 3605 2010/07/05	7	6 38.277	-91 54.3379	3709	2010/07/04	21	142.77	0.78	112.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	6 38.2503	-91 54.4367	3646	2010/07/04	21	140.06	n/a	109.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	6 37.8331	-91 54.8488	3538	2010/07/04	12	49.69	0.78	38.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	6 37.3954	-91 55.3142	3615	2010/07/05	20	12.74	n/a	9.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	6 37.0952	-91 55.7378	3611	2010/07/05	19	2.21	n/a	1.7
14 6 36.842 -91 56.0333 3520 2010/07/05 21 19.54 n/a 15.2 16 6 36.5983 -91 56.0399 3586 2010/07/05 20 7.45 n/a 5.8 17 6 36.3022 -91 56.6544 3595 2010/07/05 21 20.45 0.79 16.2 18 6 35.9336 -91 57.0449 3603 2010/07/05 21 34.33 n/a 26.8 19 6 35.5346 -91 57.5511 3608 2010/07/05 21 46.75 0.81 37.9 21 6 34.7916 -91 58.2619 3610 2010/07/05 21 56.03 n/a 43.7 HF1035 1 7 1.58882 -91 31.8202 3660 2010/07/06 21 39.82 0.79 31.7 2 7 1.40595 -91 32.0233 3662 2010/07/06 21 49.10 n/a 38.3 3 7 1.23192 -91 32.0233 3654 2010/07/06 21 81.79 n/a 63.8 5 7 0.88316	13	6 36.9485	-91 55.9154	3560	2010/07/05	21	40.05	n/a	31.2
16 6 36.5983 -91 56.3099 3586 2010/07/05 20 7.45 n/a 5.8 17 6 36.3022 -91 56.6544 3595 2010/07/05 21 20.45 0.79 16.2 18 6 35.9336 -91 57.0449 3603 2010/07/05 21 34.33 n/a 26.8 19 6 35.5346 -91 57.5511 3608 2010/07/05 13 36.07 n/a 28.1 20 6 35.1842 -91 57.8663 3605 2010/07/05 21 46.75 0.81 37.9 21 6 34.7916 -91 58.2619 3610 2010/07/05 21 49.10 n/a 43.7 HF1035 1 7 1.58882 -91 31.8202 3660 2010/07/06 21 49.10 n/a 38.3 3 7 1.23192 -91 32.2046 3657 2010/07/06 21 81.79 n/a 63.8 5 7 0.88316 -91 32.6281 3649 2010/07/06 21 113.74 n/a 88.7 6 7 0.72483	14	6 36.842	-91 56.0333	3520	2010/07/05	21	19.54	n/a	15.2
17 6 36.3022 -91 56.6544 3595 2010/07/05 21 20.45 0.79 16.2 18 6 35.9336 -91 57.0449 3603 2010/07/05 21 34.33 n/a 26.8 19 6 35.5346 -91 57.5511 3608 2010/07/05 13 36.07 n/a 28.1 20 6 35.1842 -91 57.8663 3605 2010/07/05 21 46.75 0.81 37.9 21 6 34.7916 -91 58.2619 3610 2010/07/05 21 56.03 n/a 43.7 HF1035 1 7 1.58882 -91 31.8202 3660 2010/07/06 21 39.82 0.79 31.7 2 7 1.40595 -91 32.0233 3662 2010/07/06 21 49.10 n/a 38.3 3 7 1.23192 -91 32.0246 3657 2010/07/06 21 81.79 n/a 63.8 5 7 0.88316 -91 32.6281 3649 2010/07/06 21 113.74 n/a 88.7 6 7 0.72483	16	6 36.5983	-91 56.3099	3586	2010/07/05	20	7.45	n/a	5.8
18 6 35.9336 -91 57.0449 3603 2010/07/05 21 34.33 n/a 26.8 19 6 35.5346 -91 57.5511 3608 2010/07/05 13 36.07 n/a 28.1 20 6 35.1842 -91 57.8663 3605 2010/07/05 21 46.75 0.81 37.9 21 6 34.7916 -91 58.2619 3610 2010/07/05 21 56.03 n/a 43.7 HF1035 1 7 1.58882 -91 31.8202 3660 2010/07/06 21 39.82 0.79 31.7 2 7 1.40595 -91 32.0233 3662 2010/07/06 21 49.10 n/a 38.3 3 7 1.23192 -91 32.2046 3657 2010/07/06 21 81.79 n/a 63.8 4 7 1.08883 -91 32.6281 3649 2010/07/06 21 113.74 n/a 88.7 6 7 0.72483 -91 32.7915 3661 2010/07/06 21 123.94 n/a 96.7 7 7 0.510402	17	6 36.3022	-91 56.6544	3595	2010/07/05	21	20.45	0.79	16.2
19 6 35.5346 -91 57.5511 3608 2010/07/05 13 36.07 n/a 28.1 20 6 35.1842 -91 57.8663 3605 2010/07/05 21 46.75 0.81 37.9 21 6 34.7916 -91 58.2619 3610 2010/07/05 21 56.03 n/a 43.7 HF1035 1 7 1.58882 -91 31.8202 3660 2010/07/06 21 39.82 0.79 31.7 2 7 1.40595 -91 32.0233 3662 2010/07/06 21 49.10 n/a 38.3 3 7 1.23192 -91 32.0246 3657 2010/07/06 21 62.23 n/a 48.5 4 7 1.08883 -91 32.6281 3649 2010/07/06 21 113.74 n/a 88.7 6 7 0.72483 -91 32.7915 3661 2010/07/06 21 123.94 n/a 96.7 7 7 0.510402 -91 33.0121 3652 2010/07/06 21 123.94 n/a 96.7 7 7 0.322195	18	6 35.9336	-91 57.0449	3603	2010/07/05	21	34.33	n/a	26.8
20 6 35.1842 -91 57.8663 3605 2010/07/05 21 46.75 0.81 37.9 21 6 34.7916 -91 58.2619 3610 2010/07/05 21 56.03 n/a 43.7 HF1035 1 7 1.58882 -91 31.8202 3660 2010/07/06 21 39.82 0.79 31.7 2 7 1.40595 -91 32.0233 3662 2010/07/06 21 49.10 n/a 38.3 3 7 1.23192 -91 32.2046 3657 2010/07/06 21 62.23 n/a 48.5 4 7 1.08883 -91 32.2046 3657 2010/07/06 21 81.79 n/a 63.8 5 7 0.88316 -91 32.6281 3649 2010/07/06 21 113.74 n/a 88.7 6 7 0.72483 -91 33.0121 3652 2010/07/06 21 123.94 n/a 96.7 7 7 0.510402 -91 33.0121 3652 2010/07/06 21 26.50 0.79 21.1 9 7 0.236434 -91	19	6 35.5346	-91 57.5511	3608	2010/07/05	13	36.07	n/a	28.1
21 6 34./916 -91 58.2619 3610 2010/07/05 21 56.03 n/a 43.7 HF1035 1 7 1.58882 -91 31.8202 3660 2010/07/06 21 39.82 0.79 31.7 2 7 1.40595 -91 32.0233 3662 2010/07/06 21 49.10 n/a 38.3 3 7 1.23192 -91 32.2046 3657 2010/07/06 21 62.23 n/a 48.5 4 7 1.08883 -91 32.6281 3649 2010/07/06 21 113.74 n/a 63.8 5 7 0.88316 -91 32.7915 3661 2010/07/06 21 113.74 n/a 88.7 6 7 0.72483 -91 33.0121 3652 2010/07/06 21 57.09 n/a 44.5 8 7 0.322195 -91 33.258 3637 2010/07/06 21 26.50 0.79 21.1 9 7 0.236434 -91 33.3603 3644 2010/07/06	20	6 35.1842	-91 57.8663	3605	2010/07/05	21	46.75	0.81	37.9
HF1035 1 7 1.58882 -91 31.8202 3660 2010/07/06 21 39.82 0.79 31.7 2 7 1.40595 -91 32.0233 3662 2010/07/06 21 49.10 n/a 38.3 3 7 1.23192 -91 32.2046 3657 2010/07/06 21 62.23 n/a 48.5 4 7 1.08883 -91 32.6281 3649 2010/07/06 21 11.3.74 n/a 63.8 5 7 0.88316 -91 32.6281 3649 2010/07/06 21 123.94 n/a 96.7 7 7 0.510402 -91 33.0121 3652 2010/07/06 21 57.09 n/a 44.5 8 7 0.322195 -91 33.2258 3637 2010/07/06 21 26.50 0.79 21.1 9 7 0.236434 -91 33.3603 3644 2010/07/06 21 26.50 0.79 21.1 9 7 0.130105 -91 33.494 3590 2010/07/06 9 37.72 n/a 29.4 10 7 0.130105 -91 33.494 <td>21</td> <td>6 34.7916</td> <td>-91 58.2619</td> <td>3610</td> <td>2010/07/05</td> <td>21</td> <td>56.03</td> <td>n/a</td> <td>43.7</td>	21	6 34.7916	-91 58.2619	3610	2010/07/05	21	56.03	n/a	43.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		HF1035							
2 7 1.40595 -91 32.0233 3662 2010/07/06 21 49.10 n/a 38.3 3 7 1.23192 -91 32.2046 3657 2010/07/06 21 62.23 n/a 48.5 4 7 1.08883 -91 32.3973 3654 2010/07/06 21 81.79 n/a 63.8 5 7 0.88316 -91 32.6281 3649 2010/07/06 21 113.74 n/a 88.7 6 7 0.72483 -91 32.7915 3661 2010/07/06 21 123.94 n/a 96.7 7 7 0.510402 -91 33.0121 3652 2010/07/06 21 57.09 n/a 44.5 8 7 0.322195 -91 33.258 3637 2010/07/06 21 26.50 0.79 21.1 9 7 0.236434 -91 33.3603 3644 2010/07/06 9 37.72 n/a 29.4 10 7 0.130105 -91 33.494 3590 2010/07/06 21 46.79 n/a 36.5 11 6 59.4049 -91 34.2412 3420 2010/07/06 </td <td>1</td> <td>7 1.58882</td> <td>-91 31.8202</td> <td>3660</td> <td>2010/07/06</td> <td>21</td> <td>39.82</td> <td>0.79</td> <td>31.7</td>	1	7 1.58882	-91 31.8202	3660	2010/07/06	21	39.82	0.79	31.7
3 7 1.23192 -91 32.2046 3657 2010/07/06 21 62.23 n/a 48.5 4 7 1.08883 -91 32.3973 3654 2010/07/06 21 81.79 n/a 63.8 5 7 0.88316 -91 32.6281 3649 2010/07/06 21 113.74 n/a 88.7 6 7 0.72483 -91 32.7915 3661 2010/07/06 21 123.94 n/a 96.7 7 7 0.510402 -91 33.0121 3652 2010/07/06 21 57.09 n/a 44.5 8 7 0.322195 -91 33.2258 3637 2010/07/06 21 26.50 0.79 21.1 9 7 0.236434 -91 33.3603 3644 2010/07/06 9 37.72 n/a 29.4 10 7 0.130105 -91 33.494 3590 2010/07/06 21 46.79 n/a 36.5 11 6 59.4049 -91 34.2412 3420 2010/07/06 18 15.56 0.86 13.4 12 6 59.4151 91 34.2412 3420 2010/07/06	2	7 1.40595	-91 32.0233	3662	2010/07/06	21	49.10	n/a	38.3
4 7 1.08883 -91 32.3973 3654 2010/07/06 21 81.79 n/a 63.8 5 7 0.88316 -91 32.6281 3649 2010/07/06 21 113.74 n/a 88.7 6 7 0.72483 -91 32.7915 3661 2010/07/06 21 123.94 n/a 96.7 7 7 0.510402 -91 33.0121 3652 2010/07/06 21 57.09 n/a 44.5 8 7 0.322195 -91 33.2258 3637 2010/07/06 21 26.50 0.79 21.1 9 7 0.236434 -91 33.3603 3644 2010/07/06 9 37.72 n/a 29.4 10 7 0.130105 -91 33.494 3590 2010/07/06 21 46.79 n/a 36.5 11 6 59.4049 -91 34.2412 3420 2010/07/06 18 15.56 0.86 13.4 12 6 59.4151 91 34.236 3424 2010/07/06 19 16.70 m/a 36.5	3	7 1.23192	-91 32.2046	3657	2010/07/06	21	62.23	n/a	48.5
5 7 0.88316 -91 32.6281 3649 2010/07/06 21 113.74 n/a 88.7 6 7 0.72483 -91 32.7915 3661 2010/07/06 21 123.94 n/a 96.7 7 7 0.510402 -91 33.0121 3652 2010/07/06 21 57.09 n/a 44.5 8 7 0.322195 -91 33.2258 3637 2010/07/06 21 26.50 0.79 21.1 9 7 0.236434 -91 33.3603 3644 2010/07/06 9 37.72 n/a 29.4 10 7 0.130105 -91 33.494 3590 2010/07/06 21 46.79 n/a 36.5 11 6 59.4049 -91 34.2412 3420 2010/07/06 18 15.56 0.86 13.4 12 6 59.4151 91 34.236 3424 2010/07/06 10 16 70 n/a 36.5	4	7 1.08883	-91 32.3973	3654	2010/07/06	21	81.79	n/a	63.8
6 7 0.72483 -91 32.7915 3661 2010/07/06 21 123.94 n/a 96.7 7 7 0.510402 -91 33.0121 3652 2010/07/06 21 57.09 n/a 44.5 8 7 0.322195 -91 33.2258 3637 2010/07/06 21 26.50 0.79 21.1 9 7 0.236434 -91 33.3603 3644 2010/07/06 9 37.72 n/a 29.4 10 7 0.130105 -91 33.494 3590 2010/07/06 21 46.79 n/a 36.5 11 6 59.4049 -91 34.2412 3420 2010/07/06 18 15.56 0.86 13.4 12 6 59.4151 91 34.236 3424 2010/07/06 10 16 70 n/a 12 0	5	7 0.88316	-91 32.6281	3649	2010/07/06	21	113.74	n/a	88.7
7 7 0.510402 -91 33.0121 3652 2010/07/06 21 57.09 n/a 44.5 8 7 0.322195 -91 33.2258 3637 2010/07/06 21 26.50 0.79 21.1 9 7 0.236434 -91 33.3603 3644 2010/07/06 9 37.72 n/a 29.4 10 7 0.130105 -91 33.494 3590 2010/07/06 21 46.79 n/a 36.5 11 6 59.4049 -91 34.2412 3420 2010/07/06 18 15.56 0.86 13.4 12 6 59.4151 91 34.236 3424 2010/07/06 10 16 70 m/a 36.5	6	7 0.72483	-91 32.7915	3661	2010/07/06	21	123.94	n/a	96.7
8 7 0.322195 -91 33.2258 3637 2010/07/06 21 26.50 0.79 21.1 9 7 0.236434 -91 33.3603 3644 2010/07/06 9 37.72 n/a 29.4 10 7 0.130105 -91 33.494 3590 2010/07/06 21 46.79 n/a 36.5 11 6 59.4049 -91 34.2412 3420 2010/07/06 18 15.56 0.86 13.4 12 6 59.4151 91 34.236 3424 2010/07/06 10 16 70 n/a 12 0	7	7 0.510402	-91 33.0121	3652	2010/07/06	21	57.09	n/a	44.5
9 7 0.236434 -91 33.3603 3644 2010/07/06 9 37.72 n/a 29.4 10 7 0.130105 -91 33.494 3590 2010/07/06 21 46.79 n/a 36.5 11 6 59.4049 -91 34.2412 3420 2010/07/06 18 15.56 0.86 13.4 12 6 59.4151 91 34.236 3424 2010/07/06 10 16 70 n/a 12 0	8	7 0.322195	-91 33.2258	3637	2010/07/06	21	26.50	0.79	21.1
10 7 0.130105 -91 33.494 3590 2010/07/06 21 46.79 n/a 36.5 11 6 59.4049 -91 34.2412 3420 2010/07/06 18 15.56 0.86 13.4 12 6 59.4151 91 34.236 3424 2010/07/06 10 16 70 n/a 12 0	9	7 0.236434	-91 33.3603	3644	2010/07/06	9	37.72	n/a	29.4
11 6 59.4049 -91 34.2412 3420 2010/07/06 18 15.56 0.86 13.4 12 6 59.4151 91 34.236 3424 2010/07/06 10 16.70 12 12	10	7 0.130105	-91 33.494	3590	2010/07/06	21	46.79	n/a	36.5
	11	6 59.4049	-91 34.2412	3420	2010/07/06	18	15.56	0.86	13.4
12 0 03.4101 -31 04.200 0424 2010/07/00 19 10.70 11/8 13.0	12	6 59.4151	-91 34.236	3424	2010/07/06	19	16.70	n/a	13.0

Table 2. Measured heat flow values.

no	Latitude	Longitude	Depth [m]	Date	no Sensors used	TGrad [°C/km]	Mean TC [W/mK]	Heat Flow [mW/m ²]
	HF1036						[
1	7 13.8647	-91 19.0103	3720	2010/07/07	21	176.90	0.78	139.3
2	7 13.5445	-91 19.3615	3731	2010/07/07	21	180.56	n/a	140.8
3	7 13.2284	-91 19.7119	3727	2010/07/07	21	179.54	n/a	140.0
4	7 12.902	-91 20.0808	3720	2010/07/07	21	179.41	0.79	141.8
5	7 12.6638	-91 20.3562	3694	2010/07/07	21	174.66	n/a	136.2
6	7 12.3686	-91 20.6655	3692	2010/07/07	21	200.13	n/a	156.1
7	7 12.067	-91 21.0663	3660	2010/07/07	21	183.13	n/a	142.8
8	7 11.764	-91 21.3847	3696	2010/07/07	21	186.43	0.78	146.1
9	7 11.448	-91 21.7176	3718	2010/07/07	21	185.91	n/a	145.0
	HF1037							
1	7 23.2719	-91 25.6746	3652	2010/07/07	18	7.92	n/a	6.2
2	7 22.9436	-91 25.3115	3643	2010/07/07	9	10.91	n/a	8.5
3	7 22.5082	-91 24.9457	3657	2010/07/07	19	8.21	n/a	6.4
4	7 22.1172	-91 24.5955	3655	2010/07/07	6	4.05	n/a	3.2
5	7 21.7291	-91 24.2208	3670	2010/07/08	9	10.73	n/a	8.4
6	7 21.3339	-91 23.8939	3654	2010/07/08	21	10.48	0.79	8.3
7	7 20.9388	-91 23.5263	3653	2010/07/08	20	12.20	n/a	9.5
8	7 20.5533	-91 23.1947	3676	2010/07/08	20	33.21	n/a	25.9
9	7 20.1269	-91 22.8125	3688	2010/07/08	20	26.52	n/a	20.7
10	7 19.7425	-91 22.4532	3687	2010/07/08	20	22.81	n/a	17.8
11	7 19.3657	-91 22.0958	3685	2010/07/08	20	22.85	n/a	17.8
	HF1038							
1	7 58.6484	-90 32.5608	3455	2010/07/09	21	57.24	n/a	44.7
2	7 58.5233	-90 32.7015	3455	2010/07/10	21	60.03	n/a	46.8
3	7 58.3874	-90 32.8647	3452	2010/07/10	21	66.28	0.79	53.0
4	7 58.263	-90 33.001	3456	2010/07/10	21	68.53	n/a	53.5
5	7 58.127	-90 33.1361	3457	2010/07/10	21	73.60	n/a	57.4
6	7 57.9023	-90 33.4322	3504	2010/07/10	21	237.02	0.81	193.9
7	7 58.014	-90 33.555	3508	2010/07/10	21	158.51	n/a	123.6
8	7 57.7612	-90 33.568	3495	2010/07/10	21	184.91	n/a	144.2
9	7 57.5476	-90 33.5784	3500	2010/07/10	21	145.79	n/a	113.7
10	7 57.6671	-90 33.6349	3502	2010/07/10	20	204.65	n/a	159.6
11	7 57.9172	-90 33 7474	3508	2010/07/10	21	262.71	0.78	204.9
12	7 57.8104	-90 33.7591	3496	2010/07/10	21	221.23	n/a	172.6
13	7 57.5672	-90 33.7361	3478	2010/07/10	21	162.82	n/a	127.0
14	7 57.2954	-90 34 0953	3448	2010/07/10	21	108.97	n/a	85.0
15	7 57.258	-90 34.1454	3447	2010/07/10	21	123.25	0.79	97.1
16	7 57.1076	-90 34.2982	3453	2010/07/10	21	140.54	n/a	109.6

Table 2. Measured heat flow values.

no	Latitude	Longitude	Depth [m]	Date	no Sensors used	TGrad [°C/km]	Mean TC [W/mK]	Heat Flow [mW/m²]
	HF1039							
1	7 55.3093	-90 28.7832	3418	2010/07/10	17	15.76	n/a	12.3
2	7 55.3029	-90 28.7885	3418	2010/07/10	17	15.50	n/a	12.1
3	7 55.2973	-90 28.7756	3419	2010/07/10	19	14.70	n/a	11.5
4	7 54.9298	-90 28.7999	3421	2010/07/10	16	15.91	n/a	12.4
5	7 54.6097	-90 28.8002	3424	2010/07/10	17	13.68	n/a	10.7
6	7 54.2943	-90 28.7889	3428	2010/07/11	16	13.81	n/a	10.8
7	7 54.0442	-90 28.7941	3426	2010/07/11	17	11.79	n/a	9.2
8	7 53.6672	-90 28.8024	3419	2010/07/11	18	11.32	n/a	8.8
9	7 53.2936	-90 28.79	3415	2010/07/11	14	11.17	n/a	8.7
10	7 52.9595	-90 28.7906	3414	2010/07/11	13	8.40	n/a	6.6
11	7 52.6117	-90 28.7905	3412	2010/07/11	10	14.16	n/a	11.0
12	7 52.4173	-90 28.7889	3418	2010/07/11	10	13.61	0.82	11.2
14	7 52.2539	-90 28.7861	3421	2010/07/11	12	11.34	n/a	8.8
15	7 52.019	-90 28.7804	3419	2010/07/11	17	20.22	n/a	15.8
16	7 51.8136	-90 28.7723	3413	2010/07/11	20	16.84	0.79	13.3
17	7 51.6236	-90 28.8086	3412	2010/07/11	17	12.28	n/a	9.6

Appendix Sediment und Porenwasser

für das Projekt

SO207 – SEAMOUNTFLUX

Effiziente Abkühlung junger ozeanischer Kruste durch Zirkulation von Meerwasser durch Seamounts (Guatemala Becken, Ostpazifik)

Förderkennzeichen 03G0207A

Zeitraum 1.3.2010 – 31.4.2012

Prof. Dr. H. Villinger

Prof. Dr. T. Pichler

Fachbereich Geowissenschaften

Universität Bremen

Bremen

Appendix I – Sediment and Pore Water

Calcium carbonate, total organic carbon and total carbon content in the GeoB cores.

GeoB14601-1	(cm) 4 24 44 64 84 128 168 218 268 318	(WT%) 1.8 1.3 1.0 0.0 1.0 1.2 0.7 1.2	(WT%) 1.3 0.9 0.7 0.0 0.7 0.8 0.4	(WT%) 3.9 2.7 2.8 0.0 1.9 3.3
GeoB14601-1	4 24 44 64 84 128 168 218 268 318	1.8 1.3 1.0 0.0 1.0 1.2 0.7 1.2	1.3 0.9 0.7 0.0 0.7 0.8 0.4	3.9 2.7 2.8 0.0 1.9 3.3
	24 44 64 84 128 168 218 268 318	1.3 1.0 0.0 1.0 1.2 0.7 1.2	0.9 0.7 0.0 0.7 0.8 0.4	2.7 2.8 0.0 1.9 3.3
	44 64 84 128 168 218 268 318	$ \begin{array}{c} 1.0\\ 0.0\\ 1.0\\ 1.2\\ 0.7\\ 1.2 \end{array} $	0.7 0.0 0.7 0.8 0.4	2.8 0.0 1.9 3.3
	64 84 128 168 218 268 318	0.0 1.0 1.2 0.7 1.2	0.0 0.7 0.8 0.4	0.0 1.9 3.3
	84 128 168 218 268 318	1.0 1.2 0.7 1.2	0.7 0.8 0.4	1.9 3.3
	128 168 218 268 318	1.2 0.7 1.2	$\begin{array}{c} 0.8\\ 0.4\end{array}$	3.3
	168 218 268 318	0.7 1.2	0.4	
	218 268 318	1.2		1.8
	268 318		0.6	4.5
	318	2.2	0.3	15.2
	210	1.4	0.7	6.0
	368	2.8	0.8	17.3
	418	0.9	0.4	4.3
	468	2.2	0.9	10.7
	522	0.9	0.3	4.6
	568	1.7	0.5	10.0
	618	2.3	0.6	13.9
	668	1.3	0.4	7.1
	718	2.1	0.4	14.0
	768	1.5	0.4	8.9
	818	0.5	0.3	2.1
	868	2.2	0.4	14.7
	880	2.2	0.5	14.3
	937	2.0	0.4	13.1
GeoB14602-1	5	1.7	1.1	5.4
	20	2.1	1.2	6.8
	35	1.6	1.1	4.5
	95	0.7	0.5	2.2
	110	0.7	0.4	2.8
	131	0.0	0.0	0.1
	160	0.9	0.6	1.9
	188	1.2	0.7	3.9
	235	1.3	0.6	6.4
	285	1.1	0.5	5.5
	335	1.5	0.7	7.2
	385	1.3	0.4	7.3
	435	1.5	0.4	9.1
	485	1.4	0.9	4.5
	535	0.9	0.4	4.1
	585	1.8	0.5	11.1
	635	1.3	0.5	6.5
	685	1.2	0.7	4.5
	735	0.9	0.4	4.4
	785	1.4	0.6	6.2
	835	1.9	0.1	15.6
	885	0.9	0.6	2.3
GeoB14603-1	3	0.1	1.5	0.0
-	28	1.5	1.1	2.7
	53	1.0	0.6	31

Core	Depth	ТС	тос	CaCO3
	(cm)	(WT%)	(WT%)	(WT%)
	90	0.4	0.3	0.8
	143	0.9	0.7	1.5
	190	1.6	1.0	4.3
	243	0.7	0.6	1.4
	290	0.9	0.5	3.2
	343	1.2	0.7	4.1
	390	1.5	0.4	9.6
	443	1.4	0.8	5.0
	490	1.3	0.5	7.1
	543	1.7	0.6	9.1
	590	1.3	0.4	6.8
	643	0.9	0.4	3.7
	690	1.0	0.5	4.6
	743	1.0	0.6	3.5
	790 815	1.0	0.3	4.4
	840	1.0	0.4	23.1 4.6
	870	n.d	n.d	n.d
GeoB14604-1	5	n.d.	n.d.	n.d.
	35	n.d.	n.d.	n.d.
	96	0.1	0.1	0.0
	130	0.6	0.6	0.5
	180	1.6	1.0	4.8
	230	1.3	0.9	3.4
	280	0.7	0.5	1.8
	330	1.2	0.8	3.8
	382	1.3	0.5	6.1
	430	1.3	0.9	3.7
	480	1.1	0.5	4.4
	580	2.0	0.7	10.5
	580 630	1.0	0.5	0.0 5.2
	680	0.8	0.0	3.0
	730	1.2	0.7	4.3
	780	3.4	0.5	24.2
	830	1.1	0.5	5.1
	880	1.2	0.5	6.0
	930	2.0	0.5	12.5
GeoB14605-1	30	n.d.	n.d.	n.d.
	68	1.4	1.0	3.4
	97	1.4	1.2	2.2
	125	1.1	0.9	1.6
	164	0.5	0.5	0.0
	185	0.0	0.1	0.0
	199	0.5	0.5	0.0
	213	0.1	0.1	0.0
	221	0.5	0.5	0.0
	235	0.0	0.0	0.0
	233	0.6	0.5	0.0
	270	1.5	1.2	2.5
	320	1.4	1.2	1.0
	370	1.6	1.3	2.1
	420	2.1	1.4	5.7
	470	0.9	0.9	0.2
	520	0.7	0.6	0.7
	570	1.1	0.7	3.7
	620	1.5	1.1	3.6

Core	Depth	ТС	тос	CaCO3
	(cm)	(WT%)	(WT%)	(WT%)
GeoB14607-1	10	1.0	0.7	2.0
	24	1.3	0.8	4.6
	47	1.2	0.6	5.3
	57	0.7	0.3	2.9
	60	0.2	0.1	0.9
	63	0.0	0.0	0.0
	68 70	0.3	0.2	1.1
	70	0.5	0.4	0.8
	/3	0.4	0.3	1.2
	80 103	0.4	0.2	1.0
	140	0.5	0.5	1.3
	140	0.8	0.0	1.5
	205	0.4	0.1	1.9
	205	0.4	0.2	1.5
	254	1.0	0.3	
	234	0.3	0.2	2.5
	286	1.6	0.2	117
	304	1.4	0.4	8.6
	350	2.2	0.3	16.3
	450	1.2	0.6	5.1
	550	2.8	0.2	21.9
	650	0.4	0.1	1.9
	704	0.3	0.2	1.5
GeoB14608-1	12	0.6	0.4	1.5
	43	0.1	0.1	0.4
	80	0.3	0.2	1.2
	125	0.6	0.4	1.5
	176	0.3	0.2	0.6
	193	7.6	0.0	63.1
	213	0.3	0.1	1.9
	280	1.1	0.3	6.3
	348	0.2	0.1	0.7
	365	7.6	0.0	63.1
	405	8.5	0.0	71.2
	445	8.8	0.0	73.4
	453	0.4	0.2	2.1
	506	2.1	0.0	17.4
	538	0.1	0.0	0.6
	580	1.3	0.2	8.7
	638	2.2	0.2	16.9
	701	2.2	0.2	16.9
	706	1.7	0.1	13.5
	711	0.6	0.2	3.3
	11212	0.4	0.3	1.1
$C_{ab} D1 ACO2 2$	/33	7.0	0.1	£
GeoB14008-2	809	7.2	0.1	59.2
	809 6	7.2 0.8	0.1 0.7	59.2 1.2
	809 6 12	7.2 0.8 0.9	0.1 0.7 0.7	59.2 1.2 2.0
	809 6 12 18	7.2 0.8 0.9 1.0	0.1 0.7 0.7 0.9	59.2 1.2 2.0 0.7
	809 6 12 18 24	7.2 0.8 0.9 1.0 1.2	0.1 0.7 0.7 0.9 1.0	59.2 1.2 2.0 0.7 2.2
Coo D 1 4600 1	809 6 12 18 24 30	7.2 0.8 0.9 1.0 1.2 1.9	0.1 0.7 0.9 1.0 1.0	59.2 1.2 2.0 0.7 2.2 8.2
GeoB14609-1	809 6 12 18 24 30 9	7.2 0.8 0.9 1.0 1.2 1.9 0.8	0.1 0.7 0.9 1.0 1.0 0.6	59.2 1.2 2.0 0.7 2.2 8.2 1.7 0.1
GeoB14609-1	809 6 12 18 24 30 9 16	7.2 0.8 0.9 1.0 1.2 1.9 0.8 0.0	$\begin{array}{c} 0.1 \\ 0.7 \\ 0.9 \\ 1.0 \\ 1.0 \\ 0.6 \\ 0.0 \\ 0.5 \end{array}$	59.2 1.2 2.0 0.7 2.2 8.2 1.7 0.1 0.0
GeoB14609-1	809 6 12 18 24 30 9 16 54	7.2 0.8 0.9 1.0 1.2 1.9 0.8 0.0 0.7 0.5	$\begin{array}{c} 0.1 \\ 0.7 \\ 0.7 \\ 0.9 \\ 1.0 \\ 1.0 \\ 0.6 \\ 0.0 \\ 0.5 \\ 0.4 \end{array}$	59.2 1.2 2.0 0.7 2.2 8.2 1.7 0.1 0.9 1.0
GeoB14609-1	733 809 6 12 18 24 30 9 16 54 100	7.2 0.8 0.9 1.0 1.2 1.9 0.8 0.0 0.7 0.5 0.2	$\begin{array}{c} 0.1 \\ 0.7 \\ 0.7 \\ 0.9 \\ 1.0 \\ 1.0 \\ 0.6 \\ 0.0 \\ 0.5 \\ 0.4 \\ 0.2 \end{array}$	59.2 1.2 2.0 0.7 2.2 8.2 1.7 0.1 0.9 1.0 0.4
GeoB14609-1	809 6 12 18 24 30 9 16 54 100 156 201	7.2 0.8 0.9 1.0 1.2 1.9 0.8 0.0 0.7 0.5 0.2	$\begin{array}{c} 0.1 \\ 0.7 \\ 0.7 \\ 0.9 \\ 1.0 \\ 1.0 \\ 0.6 \\ 0.0 \\ 0.5 \\ 0.4 \\ 0.2 \\ 0.2 \\ 0.2 \end{array}$	59.2 1.2 2.0 0.7 2.2 8.2 1.7 0.1 0.9 1.0 0.4
GeoB14609-1	809 6 12 18 24 30 9 16 54 100 156 201 254	7.2 0.8 0.9 1.0 1.2 1.9 0.8 0.0 0.7 0.5 0.2 0.3 0.2	$\begin{array}{c} 0.1 \\ 0.7 \\ 0.7 \\ 0.9 \\ 1.0 \\ 1.0 \\ 0.6 \\ 0.0 \\ 0.5 \\ 0.4 \\ 0.2 \\ 0.3 \\ 0.1 \end{array}$	59.2 1.2 2.0 0.7 2.2 8.2 1.7 0.1 0.9 1.0 0.4 0.6 0.7

Core	Depth	ТС	тос	CaCO3
	(cm)	(WT%)	(WT%)	(WT%)
	422	0.1	0.2	0.0
	478	0.1	0.2	0.0
	522	0.1	0.1	0.4
	580	3.3	0.0	27.4
	649	10.3	0.0	85.5
GeoB14610-1	33	0.4	0.3	1.0
	52	0.8	0.6	1.6
	72	0.6	0.4	1.4
	93	0.4	0.3	0.9
	111	0.5	0.5	0.6
	144	0.3	0.2	0.9
	177	0.8	0.4	3.3
	209	0.4	0.3	1.2
	247	0.3	0.3	0.1
	277	0.8	0.4	3.1
	311	0.4	0.4	0.1
	347	0.2	0.3	0.0
	381	0.3	0.3	0.0
	413	0.4	0.2	1.0
	462	0.1	0.2	0.1
	511	0.3	0.5	0.1
	562	0.2	0.1	0.0
	502 611	0.2	0.2	0.0
GooD14611 1	10	0.0	0.1	0.0
Jeod14011-1	10	1.0	0.8	2.0
	41	1.0	0.8	1./
	/5	1.1	0.5	5.1
	113	0.3	0.3	0.5
	160	0.8	0.7	0.7
	193	1.1	0.6	4.2
	243	0.4	0.4	0.1
	301	1.2	0.5	5.5
	349	0.7	0.4	2.2
	393	1.5	0.3	9.5
	430	2.4	0.5	15.8
	463	0.5	0.3	1.6
	505	0.9	0.5	3.2
	524	0.8	0.5	2.9
	541	0.4	0.4	0.2
	574	0.3	0.4	0.0
	634	0.3	0.4	0.0
	691	0.1	0.2	0.0
	697	0.1	0.0	1.0
	703	0.0	0.0	0.1
	710	0.2	0.1	1.0
	717	0.1	0.0	0.6
	766	0.1	0.0	0.9
GeoB14612-1	26	0.3	0.3	0.0
	76	0.3	0.4	0.0
	126	17	0.5	10.3
	176	1.0	0.5	4.6
	226	0.3	0.7	4.0 A &
	220	0.5	0.2	2.0
	210	0.0	0.5	5.2 6 1
	520 276	0.9	0.1	0.4
	5/0	0.8	0.2	5.Z
	426	0.8	0.2	5.1
	4/6	1.3	0.2	9.3
	526	3.1	0.3	23.4
	576	0.4	0.2	1.6
	626	0.8	0.2	5.5

Core	Depth	TC	TOC	CaCO3
	(cm)	(WT%)	(W1%)	(WT%)
	676	2.9	0.2	22.7
	726	1.2	0.1	8.6
	778	1.2	0.3	7.5
	824	1.3	0.2	9.2
	876	1.2	0.1	8.7
	936	0.2	0.1	0.8
	976	0.1	0.0	0.8
	1026	0.1	0.0	0.8
GeoB14613-1	10	0.6	0.4	1.2
	60	0.5	0.3	1.0
	90	0.5	0.3	1.1
	120	0.2	0.1	0.9
	180	1.2	0.2	8.8
	283	0.3	0.1	1.6
	383	0.1	0.1	0.7
	450	0.1	0.0	0.6
	499	4.9	0.0	40.7
	577	7.2	0.0	59.9
	673	5.3	0.0	43.7
GeoB14614-1	15	0.3	0.1	1.7
	80	1.0	0.4	4.9
	180	1.2	0.3	7.9
	280	2.6	0.2	19.4
	380	4.3	0.1	35.1
	480	0.6	0.2	4.0
	580	0.0	0.2	5.6
	680	15	0.5	11.3
	780	0.8	0.1	5 5
	880	0.0	0.2	0.0
GooR14615 1	53	0.2	0.2	0.0
GeoD14015-1	33 70	1.4	0.3	127
	105	1.9	0.4	12.7
	103	2.0	0.3	17.2
	142	0.3	1.2	0.0
	251	0.7	0.0	127
	251	2.0	0.3	13.7
	554 415	0.0	0.5	2.5
	413	1.2	0.4	0.7
	442	0.7	0.3	3.8
	470	1.0	0.2	6.9
	550	0.7	1.1	0.0
	604	0.8	0.5	3.1
	613	0.6	0.7	0.0
	618	0.7	0.2	3.9
	631	2.2	0.4	15.6
	677	1.0	0.3	5.2
GeoB14616-1	15	1.6	0.4	10.7
	40	1.8	0.3	12.4
	105	0.5	0.3	2.0
	186	1.5	0.7	7.0
	259	1.5	0.7	6.6
	326	1.6	0.3	10.8
	397	1.1	0.4	5.2
	407	1.8	0.7	8.9
	485	0.9	0.6	2.5
	544	3.3	0.4	23.8
	610	0.4	0.4	0.1
	659	0.9	0.7	1.2
	710	1.2	0.7	4.0
GeoB14617-1	35	15	0.5	79

Core	Depth	ТС	тос	CaCO3
Core	(cm)	(WT%)	(WT%)	(WT%)
	81	0.3	0.2	0.5
	155	1.4	0.6	7.1
	255	0.8	0.3	4.3
	353	1.5	0.4	9.0
	428	2.7	0.3	19.8
	485	1.4	0.3	9.7
	523	1.9	0.4	12.3
	587	3.1	0.2	24.6
	621	1.5	0.3	10.0
	688	0.8	0.2	5.1
	747	2.1	0.2	15.5
	819	1.2	0.2	8.2
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	882	2.6	0.2	20.3
GeoB14618-1	4	0.4	0.3	1.0
	53	2.6	0.3	18.8
	106	2.6	0.3	18.9
	172	4.9	0.2	39.8
	282	3.6	0.3	28.1
GeoB14619-1	8	1.8	1.5	2.6
	32	0.6	0.4	1.5
	38	0.0	0.0	0.1
	46	0.7	0.5	1.6
	83	1.5	1.1	3.3
	118	1.3	0.7	5.0
	145	0.3	0.2	1.3
	151	0.0	0.0	0.3
	166	1.1	0.8	2.7
	218	1.4	0.8	4.8
	258	0.8	0.5	2.0
	294	1.0	0.6	3.6
	325	0.8	0.4	2.9
	358	1.5	0.4	8.6
	394	1.9	0.9	9.0
	428	1.1	0.8	2.8
	467	0.7	0.4	3.0
	531	2.8	0.6	17.7
	567	0.8	0.3	4.1
	632	1.3	0.7	5.4
	657	0.8	0.4	3.2
	671	1.3	0.5	7.0
	732	1.2	0.6	4.8
GeoB14620-1	5	2.0	1.4	4.8
	20	2.1	1.7	3.8
	50	1.8	1.4	2.7
	81	1.9	0.6	10.9
	114	2.2	1.6	4.6
	149	1.7	1.5	2.1
	181	1.4	0.1	10.5
	214	1.3	1.0	2.6
	249	0.9	0.7	1.8
	281	0.8	0.4	2.8
	314	0.0	0.1	0.0
	349	1.1	0.9	2.1
	381	0.6	0.6	0.3
	414	0.6	0.5	0.2
	449	0.7	0.6	0.4
	481	1.4	1.0	3.2
	514	0.6	0.6	0.7
	549	0.8	0.7	0.7

Core	Depth	ТС	TOC	CaCO3
	(cm)	(WT%)	(WT%)	(WT%)
	581	1.1	0.9	1.9
	614	1.5	1.0	4.4
	649	0.7	0.5	1.2
	681	1.1	0.6	4.4
	714	1.5	0.1	11.6
GeoB14621-1	/49	2.5	0.8	14.2
	20	1.6	1.2	3.3
	08 114	0.0	0.0	0.0
	114	0.0	0.3	0.2
	214	1.5	0.8	4.5
	264	14	0.0	1.0 5.4
	314	0.8	0.4	3.4
	364	1.6	0.7	7.0
	414	0.6	0.5	1.1
	464	1.6	0.6	8.0
	514	1.0	0.5	4.7
	564	1.6	0.3	10.2
	614	0.4	0.5	0.0
	664	1.3	0.5	6.8
	714	2.2	0.4	15.3
	764	1.0	0.4	4.8
	814	2.4	0.3	17.2
	864	1.1	0.3	6.7
GeoB14622-1	16	1.4	1.0	3.2
GeoB14623-1 GeoB14624-1	29	1.0	0.7	2.4
	64	0.8	0.5	2.9
	114	2.3	0.8	12.2
	164	1./	0.6	8.4
	214	1.5	0.7	7.0
	204	0.8	0.5	0.7
	364	1.0	0.5	11.5
	414	1.0	0.4	7.3
	464	1.7	0.4	10.5
	514	1.4	0.6	6.4
	564	1.3	0.5	6.8
	614	1.5	0.4	9.3
	4	1.2	0.8	2.9
	77	1.2	0.8	2.7
	127	1.0	0.5	3.6
	177	1.5	0.7	6.9
	227	2.8	0.6	18.1
	277	1.8	0.4	11.0
	327	1.1	0.4	5.1
	377	1.3	0.5	6.6
	421	2.4	0.7	14.4
	4//	0.8	0.4	5.0 10.1
	521 577	1.3	0.5	10.1 12 0
	577	2.1 1 3	0.4	13.0 63
	640	1.3 1 1	0.0	0.5 8 5
	677	1.1	0.5	63
	44	1.2	0.5	47
	84	0.8	0.5	2.5
	117	0.5	0.4	1.3
	144	1.6	1.0	5.3
	194	1.4	0.9	3.9
	244	1.1	0.6	3.9

Core	Depth	ТС	ТОС	CaCO3
	(cm)	(WT%)	(WT%)	(WT%)
	294	1.3	0.7	5.3
	344	1.4	0.4	8.6
	394	1.2	0.7	3.7
	444	0.6	0.4	1.1
	494	2.8	0.6	18.3
	544	0.6	0.5	1.3
	594	1.3	0.5	6.1
	644	1.5	0.9	5.0
	694	0.7	0.3	3.0
	744	1.2	0.5	5.6
	794	2.3	0.6	14.5
	844	0.9	0.4	3.9
	894	2.7	0.5	18.3
GeoB14625-1	944	1.5	0.4	8.8
	1044	1.8	0.4	11.9
	30	1.5	1.2	2.5
	80	0.9	0.7	2.0
	108	0.0	0.0	0.0
	130	0.6	0.5	0.5
	180	1.3	0.7	5.2
	230	0.4	0.3	0.9
	280	1.7	0.9	7.0
	330	0.8	0.5	3.0
	380	1.7	0.8	7.5
	430	1.1	0.4	5.2
	480	1.1	0.6	4.2
	530	0.5	0.3	1.1
	580	1.6	0.6	8.3
	630	2.3	0.6	14.1
	680	1.2	0.5	6.4
	730	0.6	0.3	2.9
	780	1.1	0.4	17.2

Appendix II – Sediment and Pore Water

Element profiles collected by XRF Scanner for selected cores from the three working areas.

XRF-Profile of the Elemental Contents

GeoB14608 (3760 m)

GeoB14612

GeoB14613 (WD 3657 m)

GeoB14621 (WD 3448 m)

GeoB14623 (WD 3484 m)

Appendix III – Sediment and Pore Water

Complete listing of all chemical parameters which were measured onboard the RV Sonnen during the Seamountflux Cruise (SO 207) and at the University of Bremen. Eh and pH measurements were done directly by inserting probes into the sediment. All other parameters were measured following extraction of pore water using rhizons.

Statio	:1										Gee	oB1460)1											
Core I	number	:									Geo	B14601												
Depth/ cm	Hq	Eh [mV]	Alk _T [mmol/L]	NH4 ⁺ [mg/L]	Fe ²⁺ [mg/L]	PO4 ³⁻ [mg/L]]	Al [mg/L]	B [mg/L]	Ba [mg/L]	Ca [mg/L]	Fe [mg/L]	K [mg/L	Li [mg/L]	Mg [mg/L]	Mn [mg/L]	Na [mg/L]	P [mg/L]	S [mg/L]	Si [mg/L]	Sr [mg/L]	F- [mg/L]	CI ⁻	Br' mg/L] [SO4 ²⁻ mg/L]
4	7.69	-78.0	3.28	<0.1	0.07	0.45	0.04	4.98	0.052	397.37	0.11	474.00	0.177	1267.76	6.051	11210	0.3	878	16.75	7.72	0.6	19647	68.2	2715
24	7.65	-125.1	3.28	<0.1	0.13	0.54	0.07	4.98	0.046	398.26	0.19	476.12	0.174	1275.24	6.010	11247	0.3	879	17.12	7.72	0.6	19627	68.1	2807
4	7.64	-131.2	3.38	<0.1	0.19	0.58	0.09	4.94	0.045	398.09	0.57	481.60	0.166	1272.25	5.830	11221	0.2	878	17.55	7.71	0.6	19730	68.0	2722
64	7.55	122.5	3.09	<0.1	0.23	0.72	0.08	4.48	0.036	407.02	0.30	433.75	0.161	1299.18	5.321	11259	0.3	873	15.55	7.88	0.8	19809	72.1	2752
84	7.52	-122.6	2.98	<0.1	0.39	0.56	0.03	5.03	0.038	400.50	0.41	487.72	0.166	1270.84	5.243	11206	0.3	870	18.68	7.77	<0.1	19713	68.1	2715
128	7.45	-140.0	3.66	<0.1	0.38	0.59	0.01	4.95	0.039	402.02	0.38	485.86	0.159	1278.49	5.033	11265	0.3	886	19.09	7.79	0.7	19775	67.3	2722
168	7.47	-200.0	3.67	<0.1	0.37	0.57	-0.01	5.05	0.037	398.08	0.37	494.14	0.166	1270.27	4.920	11247	0.1	885	19.71	7.73	1.1	19756	68.3	2720
218	7.42	-213.7	3.38	<0.1	0.31	0.53	0.03	4.88	0.033	402.82	0.29	482.68	0.162	1275.11	4.822	11196	0.2	888	18.92	7.81	1.4	20307	69.8	2800
268	7.47	-237.7	3.38	0.18	0.28	0.49	0.07	4.96	0.036	399.52	0.35	487.42	0.164	1270.79	4.970	11259	0.3	875	19.49	7.77	0.7	19791	68.4	2723
318	7.44	-205.6	3.48	0.18	0.33	0.50	0.08	4.96	0.034	397.30	0.55	483.06	0.162	1260.30	5.141	11180	0.3	873	19.51	7.72	0.3	19757	67.9	2720
368	7.42	-163.0	3.28	0.25	0.15	0.40	0.06	4.98	0.039	395.69	0.20	515.71	0.169	1267.56	4.768	11305	0.2	879	19.48	7.81	0.5	20000	68.4	2755
418	7.47	-219.0	3.38	0.20	0.35	0.50	0.09	4.99	0.034	404.10	0.35	495.76	0.159	1283.76	5.513	11336	0.4	898	20.60	7.86	1.0	19814	67.8	2727
468	7.37	-107.3	3.58	0.24	0.25	0.49	0.12	5.07	0.035	403.63	0.36	499.65	0.153	1270.47	5.857	11300	0.3	885	20.88	7.87	0.3	19872	6.89	2734
522	7.44	-191.8	3.48	0.29	0.36	0.48	0.11	5.01	0.033	403.67	0.35	495.05	0.155	1273.23	5.854	11338	0.2	882	20.45	7.85	0.3	19816	67.8	2727
568	7.60	-101.4	3.68	0.24	0.31	0.44	0.11	5.05	0.034	402.36	0.31	498.25	0.149	1275.92	5.846	11225	0.2	878	20.10	7.87	0.5	19809	68.3	2723
618	7.38	-170.0	3.58	0.23	0.33	0.45	0.09	5.05	0.033	404.87	0.36	486.75	0.153	1275.47	6.055	11321	0.2	881	19.90	7.92	0.2	19821	68.4	2723
668	7.52	-178.4	3.58	0.25	0.26	0.44	0.10	5.05	0.033	405.23	0.36	492.40	0.153	1272.34	6.167	11320	0.0	878	20.11	7.91	0.6	19892	68.0	2733
718	7.37	-203.0	4.06	0.29	0.35	0.43	0.07	5.04	0.034	407.73	0.35	491.50	0.158	1283.51	6.202	11312	0.2	886	20.13	7.98	0.8	19894	68.4	2734
768	7.42	-126.8	3.58	0.22	0.36	0.37	-0.03	4.95	0.037	402.57	0.27	503.01	0.144	1276.40	5.910	11273	0.1	889	19.97	7.94	0.4	19914	68.4	2737
818	7.42	-54.6	3.38	0.31	0.36	0.40	0.09	4.95	0.033	408.27	0.31	493.35	0.150	1276.68	6.267	11380	0.1	882	19.87	7.99	0.4	19972	68.9	2745
868	7.36	-119.5	3.58	0.27	0.33	0.36	0.02	5.17	0.036	403.30	0.34	514.89	0.154	1271.02	6.374	11302	0.2	880	20.69	7.96	0.4	20125	69.2	2763
880	7.48	-127.1	3.38	0.32	0.32	0.40	0.05	5.10	0.033	406.40	0.33	495.00	0.146	1282.95	6.427	11283	0.3	877	19.72	8.00	1.8	19963	68.3	2747
937	7.52	-169.6	3.68	0.31	0.30	0.34	0.11	5.04	0.031	404.35	0.27	497.36	0.152	1283.41	6.298	11364	0.2	875	19.60	7.96	n.d.	n.d.	n.d.	n.d.
n.d. : I	not dete	ermined																						

		SO ₄ ²⁻ [mg/L]	2821	2841	2849	2814	2879	2842	2757	2798	2996	2781	2779	2792	2776	2771	2768	2774	2783	2826	2892	2921	2793	2910	
		Br' [mg/L]	68.6	70.0	70.1	69.1	69.4	70.7	68.7	69.0	72.3	68.8	68.6	68.9	68.5	68.4	68.8	67.9	69.8	69.7	72.8	70.9	69.8	73.6	
		CI ⁻ [mg/L]	20027	20249	20264	20055	20492	20584	19720	20001	21325	19854	19876	19966	19863	19830	19842	19878	19957	20256	21143	20964	20074	21319	
		F- [mg/L]	2.2	1.6	1.6	0.9	n.d.	0.8	1.2	1.3	1.3	2.1	1.2	1.1	1.7	1.0	1.1	1.1	1.2	1.3	0.8	1.0	1.1	0.7	
		Sr [mg/L]	7.64	7.72	7.77	7.81	7.83	8.03	7.89	7.93	7.93	7.98	8.06	8.03	8.04	8.07	8.05	8.11	8.15	8.14	8.11	8.09	8.13	8.19	
		Si [mg/L]	17.20	17.28	17.57	18.62	19.52	16.19	19.80	19.57	19.22	19.64	18.64	18.99	18.76	19.19	19.12	19.05	19.12	19.47	18.82	18.49	18.37	17.34	
		S [mg/L]	881	877	879	875	881	868	884	869	873	872	872	865	870	869	872	870	875	887	873	875	882	878	
		P [mg/L]	0.2	0.4	0.2	0.2	0.2	0.3	0.3	0.3	0.2	0.2	0.2	0.2	0.2	0.3	0.1	0.2	0.1	0.2	0.2	0.2	0.1	0.2	
		Na [mg/L]	11162	11197	11207	11287	11270	11230	11286	11315	11351	11414	11426	11526	11431	11539	11583	11628	11621	11543	11552	11584	11495	11518	
		Mn [mg/L]	3.684	4.757	4.626	4.393	4.200	3.321	3.604	3.480	3.320	3.260	3.107	3.123	3.066	3.089	3.041	3.036	3.008	3.041	2.924	2.896	2.853	2.613	
		Mg [mg/L]	1261.48	1272.41	1276.84	1265.93	1267.19	1293.08	1263.43	1274.14	1266.30	1278.09	1288.57	1282.86	1282.24	1280.00	1283.14	1285.55	1289.63	1287.28	1293.68	1298.72	1294.04	1293.54	
02	2-1	Li [mg/L]	0.242	0.175	0.166	0.167	0.157	0.170	0.155	0.156	0.148	0.151	0.145	0.143	0.138	0.131	0.146	0.138	0.136	0.130	0.136	0.137	0.142	0.135	
oB146	B1460	K [mg/L]	502.97	473.17	468.84	479.83	485.02	443.15	487.79	481.70	475.80	481.79	475.06	473.41	473.45	477.18	482.12	475.32	475.87	480.27	468.31	465.82	466.02	475.28	
Ge	Geo	Fe [mg/L]	0.01	0.23	0.33	0.38	0.43	0.29	0.43	0.40	0.39	0.41	0.33	0.37	0.37	0.38	0.37	0.35	0.41	0.38	0.41	0.40	0.36	0.21	
		Ca [mg/L]	396.83	401.36	405.64	406.96	408.35	418.62	410.94	413.44	413.73	417.41	421.62	420.39	420.30	423.29	422.54	424.72	425.29	426.32	426.50	426.21	425.65	428.90	
		Ba [mg/L]	0.070	0.113	0.059	0.055	0.054	0.051	0.052	0.054	0.050	0.051	0.049	0.048	0.051	0.048	0.048	0.046	0.047	0.048	0.046	0.045	0.044	0.040	
		B [mg/L]	4.83	4.98	4.85	4.72	4.83	4.46	5.10	4.94	4.88	4.94	4.84	4.84	4.83	4.90	4.97	4.89	4.91	4.90	4.86	4.87	4.79	4.60	
		Al [mg/L]	0.09	0.11	0.14	0.10	0.14	0.12	0.19	0.11	0.18	0.16	0.19	0.14	0.15	0.12	0.16	0.17	0.17	0.12	0.20	0.19	0.22	0.15	
		PO4 ³⁻ [mg/L]]	0.38	0.59	0.74	0.64	0.66	0.67	0.59	0.56	0.54	0.48	0.45	0.43	0.39	0.41	0.38	0.36	0.36	0.36	0.35	0.32	0.32	0.27	
		Fe ²⁺ [mg/L]	n.d.																						
		NH4 ⁺ [mg/L]	<0.1	<0.1	<0.1	0.41	0.43	0.43	0.52	0.43	0.47	0.52	0.49	0.50	0.47	0.55	0.55	0.48	0.47	0.41	0.46	0.45	0.43	0.43	
		Alk _T [mmol/L]	3.19	3.09	2.99	3.39	3.19	3.29	3.59	3.19	3.67	3.39	3.29	3.49	3.58	3.49	3.68	3.58	3.78	3.58	3.58	3.68	3.59	3.97	
		Eh [mV]	-45.0	-89.0	-95.0	-150.0	-150.0	104.1	-201.0	-135.0	-145.0	-140.0	-21.5	-200.7	-150.1	-213.0	-221.0	-232.7	-224.0	-234.7	-158.0	-113.0	-158.0	-136.0	rmined
::	umber	Hq	7.62	7.46	7.52	7.67	7.64	8.10	7.59	7.56	7.63	7.69	7.67	7.57	7.63	7.55	7.60	7.57	8.00	7.52	7.68	7.62	7.74	7.69	not dete
Statior	Core n	Depth/ cm	5	20	35	95	110	131	160	188	235	285	335	385	435	485	535	585	635	685	735	785	835	885	n.d. : r

	1																								
		SO_4^{2-}	[mg/L]	2726	2724	2724	2848	2731	2716	2720	2733	2836	2754	2838	2781	2747	2743	2752	2858	2741	2748	2749	2741	2761	
		Br	[mg/L]	66.6	63.1	64.3	67.4	66.3	61.1	6.99	64.8	67.2	66.1	68.0	67.5	66.6	64.9	66.8	65.2	68.2	69.4	64.8	6.7.9	65.8	
		CI-	[mg/L]	19441	19454	19441	20565	19489	19490	19507	19490	20432	19796	20509	19904	19597	19659	19712	20746	19636	20078	19616	19636	19881	
		Ϋ́	[mg/L]	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	1.0	n.d.	n.d.	n.d.	
		Sr	[mg/L]	7.69	7.68	7.75	7.67	7.68	7.35	7.73	7.69	7.70	7.80	7.71	7.75	7.77	7.81	7.87	7.82	7.99	7.87	7.97	7.97	7.86	
		Si	[mg/L]	16.02	15.95	16.75	17.01	17.10	16.40	17.81	17.88	17.75	17.24	17.95	17.19	17.64	17.50	17.90	17.31	17.47	17.83	18.27	18.05	20.72	
		s	[mg/L]	879	880	864	870	867	812	859	866	853	857	857	862	863	859	859	861	861	863	866	870	854	
		Ρ	[mg/L]	0.2	0.2	0.3	0.2	0.2	0.2	0.3	0.3	0.2	-1.3	0.3	0.1	0.3	0.0	0.2	0.2	0.1	0.2	0.2	0.2	0.0	
		Na	[mg/L]	11257	11175	11319	11314	11278	10605	11283	11275	11415	11217	11260	11285	11315	11299	11322	11254	11367	11298	11350	11415	11456	
		Mn	[mg/L]	5.120	5.596	5.103	4.538	3.836	3.283	3.199	3.196	3.148	3.014	3.180	2.959	3.240	3.175	3.172	2.926	2.948	2.822	2.842	2.755	2.751	
		Mg	mg/L]	269.98	267.13	270.17	267.18	264.78	201.33	267.91	265.93	268.93	274.67	265.62	269.41	274.48	274.87	278.72	267.04	282.62	264.12	287.89	279.60	261.74	
3	-1	Li	mg/L]	0.167	0.165	0.166	0.162	0.164	0.153 1	0.162	0.161	0.168 1	0.162 1	0.149 1	0.151	0.151	0.149	0.147	0.147	0.144	0.143]	0.145	0.147	0.156]	
oB1460	B14603	K [mø/L]	467.02	462.10	473.02	474.80	468.42	437.95	464.42	471.45	460.14	458.97	462.23	476.95	456.95	452.83	459.37	469.77	460.58	464.64	460.31	457.03	493.39	
Ge	Geol	Fe	[mg/L]	0.01	0.23	0.35	0.42	0.47	0.46	0.43	0.46	0.42	0.40	0.36	0.25	0.37	0.33	0.37	0.24	0.25	0.25	0.34	0.35	0.37	
		Са	[mg/L]	398.10	399.96	401.75	400.95	400.49	379.99	400.22	400.63	401.62	404.78	400.94	401.13	404.42	406.13	409.03	404.17	413.26	404.23	408.39	409.72	403.01	
		Ba	[mg/L]	0.048	0.045	0.041	0.037	0.033	0.035	0.032	0.039	0.033	0.031	0.030	0.032	0.033	0.029	0.033	0.033	0.029	0.030	0.029	0.030	0.054	
		В	[mg/L]	4.86	4.72	4.84	4.72	4.71	4.59	4.78	4.80	4.68	4.55	4.68	4.49	4.67	4.60	4.63	4.50	4.56	4.63	4.77	4.70	4.87	
		W	[mg/L]	0.04	0.01	0.02	0.09	-0.02	-0.01	-0.05	0.04	0.02	0.02	0.08	0.07	-0.03	0.04	0.07	-0.06	0.04	-0.06	0.02	0.09	0.46	
		PO.4 ³⁻ [mø/L.]		0.41	0.53	0.54	0.55	0.55	0.60	0.57	0.55	0.53	0.50	0.49	0.39	0.46	0.42	0.41	0.35	0.34	0.33	0.32	0.36	0.30	
		Fe^{2+}	[mg/L]	0.00	0.21	0.35	0.45	0.51	0.51	0.44	0.45	0.43	0.36	0.32	0.16	0.34	0.38	0.35	0.26	0.29	0.25	0.32	0.30	n.d.	
		$\mathbf{NH_4}^+$	[mg/L]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.40	0.37	0.41	0.42	0.40	0.43	0.44	0.47	0.40	0.41	0.40	0.43	
		Alk _T mmol/L	_	2.99	3.09	3.18	3.18	3.19	3.09	3.19	3.58	3.19	3.09	3.48	3.28	3.39	3.58	3.58	3.58	3.58	3.58	3.29	3.58	3.77	
		Eh	[] []	96.7	10.0	-103.8	-36.7	-125.0	-110.0	-123.0	-130.0	-189.0	-184.0	-141.0	-2.0	-142.0	-120.0	-157.0	-135.0	-118.0	-160.0	-158.1	-117.4	n.d.	mined
	umber:	Ha	L	7.58	7.72	7.57	7.65	7.66	7.61	7.72	7.60	7.61	7.96	7.86	7.51	7.58	7.53	7.60	8.01	7.57	7.70	7.60	7.57	n.d.	ot deter
Station	Core ni	Depth/	cm	3	28	53	90	143	190	243	290	343	390	443	490	543	590	643	069	743	790	815	840	870	n.d. : n

Statio	ï										Ge	oB146()4											
Core 1	numbe	::									Geo	B1460 ²	4-1											
Depth/	На	Eh	Alk _T [mmol/L	$\mathrm{NH_4}^+$	${\rm Fe}^{2+}$	PO.4 ³⁻ [mø/L.]	W	в	Ba	Ca	Fe	K [mø/L	Li	Mg	Mn	Na	Ρ	s	Si	Sr	Ŀ.	CI-	Br	SO_4^{2-}
сш		[mV]		[mg/L]	[mg/L]	- -	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	- s	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]
5	7.58	7.5	144.00	<0.1	0.00	0.37	0.19	4.91	0.047	397.06	0.02	454.89	0.237	1257.48	2.639	11213	0.2	856	15.57	7.65		20293	70.5	2879
35	7.72	7.6	-37.00	<0.1	0.19	0.54	0.01	4.90	0.048	397.07	0.23	458.58	0.169	1269.87	6.379	11273	0.2	857	16.48	7.61		20908	71.4	2960
96	7.57	8.1	146.00	<0.1	0.17	0.58	0.17	4.42	0.035	407.21	0.44	433.04	0.191	1285.80	4.114	11294	0.2	859	14.51	7.82	1.3	19974	69.1	2757
130	7.65	7.6	-90.00	0.38	0.36	0.57	0.09	4.74	0.036	397.80	0.36	468.25	0.164	1259.54	5.389	11306	-0.1	865	17.29	7.65		20287	68.4	2854
180	7.66	7.6	-110.00	0.43	0.33	0.69	0.09	4.77	0.037	403.23	0.35	460.07	0.162	1264.72	5.082	11279	0.3	863	16.90	7.79	1.2	20043	68.7	2752
230	7.61	7.8	-110.00	0.39	0.33	09.0	0.05	4.69	0.039	400.04	0.37	458.04	0.161	1264.73	4.993	11253	0.2	856	17.19	7.74	1.1	20076	69.69	2756
280	7.72	7.7	-123.00	<0.1	0.29	0.49	0.07	4.76	0.033	401.89	0.34	463.02	0.160	1256.05	4.957	11323	0.2	865	17.30	7.80		20642	70.7	2920
330	7.60	7.7	-176.00	0.63	0.28	0.54	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	1.0	19765	68.2	2711
382	7.61	7.6	-170.00	0.49	0.32	0.53	-0.01	4.63	0.032	402.88	0.34	456.58	0.155	1270.20	5.134	11235	0.2	870	17.53	7.85	2.3	20062	68.4	2770
430	7.96	7.8	-142.00	0.53	0.27	0.53	0.12	4.72	0.032	402.62	0.31	461.79	0.154	1267.72	5.280	11348	0.2	854	17.69	7.88	2.2	19978	68.5	2761
480	7.86	7.8	-55.00	0.52	0.28	0.55	0.06	4.79	0.032	402.76	0.31	461.96	0.159	1272.38	5.461	11320	0.3	866	18.09	7.89	2.0	19949	68.9	2754
530	7.51	7.6	-140.00	0.58	0.27	0.49	0.00	4.75	0.033	402.50	0.33	457.39	0.146	1268.86	5.638	11341	0.2	855	17.96	7.91	1.8	20137	69.3	2778
580	7.58	7.7	-156.20	0.52	0.31	0.47	0.14	4.69	0.041	407.06	0.34	459.04	0.145	1266.94	5.648	11313	0.1	857	17.55	8.02	1.9	20504	70.2	2821
630	7.53	7.6	-10.00	0.53	0.19	0.47	0.08	4.68	0.032	406.53	0.26	464.48	0.148	1268.31	5.771	11390	0.2	863	17.68	8.05	2.5	20740	69.69	2861
680	7.60	7.7	-8.20	0.55	0.32	0.46	0.05	4.69	0.030	408.36	0.32	458.87	0.147	1270.69	5.819	11350	0.2	868	17.46	8.09	2.3	21191	70.6	2921
730	8.01	7.7	-1.00	0.58	0.27	0.43	0.02	4.64	0.032	408.37	0.47	456.48	0.148	1269.78	5.801	11395	0.2	857	17.17	8.12	1.9	20567	6.69	2827
780	7.57	7.6	38.00	0.56	0.31	0.42	0.12	4.66	0.030	406.52	0.25	458.22	0.145	1267.10	5.755	11330	0.2	856	17.21	8.16	2.0	20227	68.8	2779
830	7.70	7.6	-200.00	0.54	0.32	0.41	0.03	4.73	0.029	406.75	0.38	456.54	0.142	1264.52	6.019	11321	0.2	862	17.86	8.16	2.1	20197	6.69	2775
880	7.60	7.6	-290.00	0.55	0.28	0.39	0.03	4.71	0.029	408.19	0.34	458.15	0.147	1266.35	6009	11361	0.1	855	17.80	8.23	1.0	20024	69.7	2726
930	7.57	7.8	100.00	0.58	0.31	0.30	0.04	4.67	0.031	406.92	0.25	483.48	0.141	1263.36	5.747	11443	0.2	862	17.53	8.31	2.2	20551	70.1	2820
n.d. : I	not det	erminec	-																					

:uo										Ge	oB146	05											
um	ıber:									Geo	B1460.	5-1											
łd	H Eh	Alk _T [mmol/L	NH4 ⁺	Fe ²⁺	PO ₄ ³⁻ [mg/L]	N	B	Ba	Ca	Fe	K [mg/L	Li	Mg	Mn	Na	P	s	Si	Sr	F	CI-	Br'	SO4 ²⁻
·	[mv]	_	[mg/L]	[mg/L]	_	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	_	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]
1.1	46 -100.6	3.13	< 0, 1	0.17	0.69	0.02	4.71	0.044	396.08	0.21	447.72	0.182	1255.32	5.137	11142	0.3	858	15.12	7.56	0.9	19939	69.1	2740
2.7	9.001- 109.9	3.20	0.48	0.20	0.80	0.04	4.63	0.039	398.07	0.25	449.10	0.158	1262.13	5.159	11233	0.2	857	15.99	7.60	0.9	20098	68.7	2753
7.8	80 -108.0	3.28	0.61	0.26	0.88	0.05	5.55	0.042	476.28	0.36	534.66	0.200	1509.60	6.101	13348	0.4	1028	20.21	9.12	0.8	19843	67.5	2710
7.7	71 -111.0	3.35	0.74	0.29	0.98	0.00	4.63	0.038	396.19	0.33	444.06	0.154	1262.38	4.797	11279	0.4	853	17.00	7.55	0.8	20309	70.9	2774
7.2	88 -140.0	3.42	0.93	0.25	1.05	0.03	4.59	0.039	397.57	0.33	451.73	0.163	1263.61	4.374	11216	0.3	844	17.35	7.57	0.8	20360	70.8	2776
7.5	93 151.1	3.52	0.92	0.16	1.17	0.08	4.08	0.039	381.56	0.29	398.45	0.140	1201.72	3.779	10587	0.4	<i>6LL</i>	15.22	7.28	0.7	18978	65.5	2595
7.7	75 -145.0	3.50	1.46	0.10	0.72	0.00	4.59	0.036	398.53	0.14	451.54	0.137	1255.22	2.907	11209	0.3	846	18.12	7.56	0.8	20359	70.6	2772
7.7	70 159.0	3.53	1.31	0.09	0.84	0.07	4.31	0.04	408.10	0.16	426.31	0.14	1277.92	2.74	11248	0.3	856	16.7	7.79	0.8	20178	69.5	2758
7.1	58 -120.0	3.44	1.40	0.12	0.64	0.08	4.46	0.035	398.48	0.18	453.47	0.143	1246.97	2.843	11316	0.2	845	17.87	7.55	0.8	20185	69.2	2752
7.7	78 148.0	3.51	1.28	0.09	0.76	0.02	4.32	0.038	405.83	0.17	425.13	0.140	1276.56	2.703	11313	0.3	855	16.67	7.73	1.3	20098	69.4	2751
7.5	87 150.0	3.58	1.26	<0.05	0.74	0.03	4.66	0.042	435.12	0.15	465.98	0.154	1372.49	2.824	12165	0.2	923	18.18	8.30	0.9	20014	68.9	2738
7.(63 -119.0	3.42	0.95	0.09	0.50	0.05	5.64	0.046	488.45	0.18	582.42	0.179	1538.71	3.339	13989	0.2	1059	23.17	9.29	1.1	20449	70.9	2788
1.1	58 -136.0	3.31	1.19	0.08	0.49	0.04	4.66	0.034	403.64	0.32	452.46	0.152	1264.81	2.750	11421	0.2	862	17.68	7.65	0.9	20529	70.9	2804
1.1	50 -150.0	3.33	1.11	<0.05	0.38	0.08	5.43	0.039	472.82	0.05	533.66	0.172	1480.05	3.216	13364	0.2	1009	21.40	8.98	0.7	17870	61.2	2417
1.1	50 21.0	3.25	1.05	<0.05	0.42	-0.04	4.73	0.034	404.62	0.09	452.33	0.136	1275.16	2.807	11512	0.2	872	18.18	7.67	0.8	20322	70.1	2780
7.(61 -172.0	3.28	0.97	<0.05	0.41	-0.03	4.61	0.034	403.13	0.05	443.83	0.139	1267.59	2.741	11417	0.2	856	17.84	7.63	0.9	20473	70.5	2803
7.5	84 -160.0	3.22	06.0	<0.05	0.35	0.03	4.92	0.037	434.34	0.06	489.80	0.159	1362.17	2.705	12346	0.1	931	19.70	8.22	0.7	20107	69.3	2750
7.(61 -168.0	3.20	0.81	<0.05	0.35	-0.02	4.57	0.033	400.43	0.07	453.70	0.139	1264.52	2.211	11417	0.1	848	18.21	7.56	0.8	20498	71.0	2820
1.1	53 -239.0	3.15	06.0	<0.05	0.33	0.04	4.57	0.031	401.52	0.07	449.07	0.139	1264.89	2.028	11338	0.1	860	18.33	7.61	0.7	20544	70.7	2814
7.5	58 -255.0	3.15	0.72	<0.05	0.36	-0.07	4.49	0.035	395.84	0.03	452.54	0.134	1244.50	1.891	11229	0.1	845	18.61	7.50	0.8	20803	71.6	2853
not (determine	p																					

Station	;;										Ge	oB146	05											
Core n	umber										Geo	B1460.	5-2											
Depth/ cm	Ηd	Eh [mV]	Alk _T [mmol/L	NH4 ⁺ [mg/L]	Fe ²⁺ [mg/L]	PO 4 ³⁻	Al [mg/L]	B mg/L] [Ba mg/L]	Ca [mg/L]	Fe [mg/L]	K [mg/L	Li [mg/L]	Mg [mg/L]	Mn [mg/L]	Na [mg/L]	P [mg/L]	S [mg/L]	Si [mg/L]	Sr [mg/L]	F- mg/L]	CI ⁻ [mg/L]	Br' mg/L]	SO4 ²⁻ mg/L]
BW	7.84	213.0	2.72	< 0,1	<0,05	0.23	0.02	4.30	0.019	399.21	0.01	398.40	0.168	1276.89	-0.004	11236	0.2	845	3.37	7.77	2.4	20158	69.1	2801
~	n.d.	n.d.	2.82	< 0,1	<0.05	0.36	0.16	4.71	0.039	397.02	0.00	443.02	0.178	1255.85	3.227	11310	0.2	858	12.80	7.48	1.0	19755	68.1	2720
18	7.48	203.0	3.00	< 0,1	0.05	0.55	0.00	4.74	0.047	397.67	0.07	453.44	0.165	1261.05	6.446	11333	0.2	864	15.03	7.64	1.1	19797	67.8	2724
26	7.63	-65.0	3.19	< 0, 1	0.31	0.76	0.00	4.80	0.047	383.57	0.32	458.97	0.158	1208.99	6.972	10956	0.3	838	15.90	7.39	0.9	19957	69.1	2740
n.d. : r	not dete	ermined																						

Item: Item Item <t< th=""><th></th><th></th><th>Br SO4² [mg/L] [mg/L]</th><th>67.3 2717</th><th>68.3 2733</th><th>69.8 2774</th><th>67.9 2722</th><th>68.9 2757</th><th>70.0 2798</th><th>69.0 2748</th><th>68.5 2721</th><th>67.5 2683</th><th>67.7 2721</th><th>67.9 2714</th><th>68.4 2740</th><th>67.6 2706</th><th>69.2 2723</th><th>68.6 2730</th><th>68.9 2746</th><th>67.5 2711</th><th>68.2 2715</th><th>68.4 2736</th><th>68.5 2730</th><th>67.6 2707</th><th>68.1 2726</th><th>69.8 2763</th><th>68.3 2720</th><th></th></t<>			Br SO4 ² [mg/L] [mg/L]	67.3 2717	68.3 2733	69.8 2774	67.9 2722	68.9 2757	70.0 2798	69.0 2748	68.5 2721	67.5 2683	67.7 2721	67.9 2714	68.4 2740	67.6 2706	69.2 2723	68.6 2730	68.9 2746	67.5 2711	68.2 2715	68.4 2736	68.5 2730	67.6 2707	68.1 2726	69.8 2763	68.3 2720	
tion: i <td></td> <th></th> <th>CI⁻ [mg/L]</th> <td>19762</td> <td>19851</td> <td>20147</td> <td>19757</td> <td>19999</td> <td>20253</td> <td>19978</td> <td>19806</td> <td>19532</td> <td>19774</td> <td>19730</td> <td>19908</td> <td>19681</td> <td>19794</td> <td>19861</td> <td>19951</td> <td>19721</td> <td>19717</td> <td>19877</td> <td>19809</td> <td>19706</td> <td>19828</td> <td>20120</td> <td>19805</td> <td></td>			CI ⁻ [mg/L]	19762	19851	20147	19757	19999	20253	19978	19806	19532	19774	19730	19908	19681	19794	19861	19951	19721	19717	19877	19809	19706	19828	20120	19805	
tion: I <td></td> <th></th> <th>F⁻ [mg/L]</th> <td></td> <td>1.2</td> <td>1.1</td> <td>1.3</td> <td>1.3</td> <td>1.0</td> <td>1.1</td> <td>1.4</td> <td>1.0</td> <td>1.1</td> <td>1.1</td> <td>1.1</td> <td>1.0</td> <td>1.0</td> <td>1.2</td> <td>1.0</td> <td>1.0</td> <td>0.9</td> <td>0.8</td> <td>1.1</td> <td>1.1</td> <td>1.0</td> <td>1.0</td> <td>1.0</td> <td></td>			F ⁻ [mg/L]		1.2	1.1	1.3	1.3	1.0	1.1	1.4	1.0	1.1	1.1	1.1	1.0	1.0	1.2	1.0	1.0	0.9	0.8	1.1	1.1	1.0	1.0	1.0	
tion: Image: Image: </td <td></td> <th></th> <th>Sr [mg/L]</th> <td>7.39</td> <td>7.58</td> <td>7.60</td> <td>7.62</td> <td>7.63</td> <td>7.75</td> <td>7.43</td> <td>7.38</td> <td>7.56</td> <td>7.60</td> <td>7.57</td> <td>7.66</td> <td>7.68</td> <td>7.71</td> <td>7.73</td> <td>7.56</td> <td>7.68</td> <td>7.67</td> <td>7.72</td> <td>7.76</td> <td>7.78</td> <td>7.85</td> <td>7.92</td> <td>7.89</td> <td></td>			Sr [mg/L]	7.39	7.58	7.60	7.62	7.63	7.75	7.43	7.38	7.56	7.60	7.57	7.66	7.68	7.71	7.73	7.56	7.68	7.67	7.72	7.76	7.78	7.85	7.92	7.89	
tion: i <td></td> <th></th> <th>Si [mg/L</th> <td>11.70</td> <td>13.42</td> <td>13.91</td> <td>14.12</td> <td>14.18</td> <td>12.93</td> <td>14.36</td> <td>14.2</td> <td>14.34</td> <td>14.49</td> <td>14.34</td> <td>13.91</td> <td>14.37</td> <td>14.60</td> <td>14.27</td> <td>14.33</td> <td>14.80</td> <td>14.70</td> <td>15.19</td> <td>15.29</td> <td>15.2</td> <td>16</td> <td>15.5</td> <td>14.8</td> <td></td>			Si [mg/L	11.70	13.42	13.91	14.12	14.18	12.93	14.36	14.2	14.34	14.49	14.34	13.91	14.37	14.60	14.27	14.33	14.80	14.70	15.19	15.29	15.2	16	15.5	14.8	
tion: i <td></td> <th></th> <th>J [mg/L</th> <td>853</td> <td>843</td> <td>850</td> <td>845</td> <td>853</td> <td>859</td> <td>843</td> <td>841</td> <td>847</td> <td>849</td> <td>856</td> <td>846</td> <td>845</td> <td>856</td> <td>857</td> <td>830</td> <td>849</td> <td>832</td> <td>841</td> <td>853</td> <td>846</td> <td>855</td> <td>846</td> <td>839</td> <td></td>			J [mg/L	853	843	850	845	853	859	843	841	847	849	856	846	845	856	857	830	849	832	841	853	846	855	846	839	
tion: i <td></td> <th></th> <th>P [] [mg/I</th> <td>6 0.1</td> <td>8 0.2</td> <td>3 0.2</td> <td>9 0.2</td> <td>7 0.3</td> <td>4 -0.1</td> <td>0 0.2</td> <td>4 0.2</td> <td>4 0.2</td> <td>8 0.2</td> <td>8 0.2</td> <td>1 0.3</td> <td>5 0.1</td> <td>4 -0.2</td> <td>4 0.2</td> <td>8 0.2</td> <td>4 0.0</td> <td>3 0.1</td> <td>7 0.2</td> <td>9 0.1</td> <td>1 0.26</td> <td>1 0.2</td> <td>0 0.09</td> <td>4 0.09</td> <td></td>			P [] [mg/I	6 0.1	8 0.2	3 0.2	9 0.2	7 0.3	4 -0.1	0 0.2	4 0.2	4 0.2	8 0.2	8 0.2	1 0.3	5 0.1	4 -0.2	4 0.2	8 0.2	4 0.0	3 0.1	7 0.2	9 0.1	1 0.26	1 0.2	0 0.09	4 0.09	
tion: i <td></td> <th></th> <th>L] [mg/]</th> <td>4 1124</td> <td>6 1122</td> <td>6 1122</td> <td>8 1127</td> <td>3 1129</td> <td>5 1128</td> <td>8 1133</td> <td>3 1128</td> <td>6 1126</td> <td>7 1133</td> <td>7 1123</td> <td>9 1133</td> <td>7 1129</td> <td>8 1133</td> <td>7 1138</td> <td>3 1114</td> <td>7 1137</td> <td>5 1125</td> <td>2 1131</td> <td>7 1134</td> <td>7 1140</td> <td>1139</td> <td>5 1148</td> <td>2 1139</td> <td></td>			L] [mg/]	4 1124	6 1122	6 1122	8 1127	3 1129	5 1128	8 1133	3 1128	6 1126	7 1133	7 1123	9 1133	7 1129	8 1133	7 1138	3 1114	7 1137	5 1125	2 1131	7 1134	7 1140	1139	5 1148	2 1139	
tion: i <td></td> <th></th> <th>Mn [mg/]</th> <td>69 2.04</td> <td>15 2.64</td> <td>14 3.74</td> <td>00 3.90</td> <td>94 4.03</td> <td>43 3.77</td> <td>59 4.11</td> <td>53 4.13</td> <td>22 4.36</td> <td>65 4.57</td> <td>48 4.81</td> <td>82 5.17</td> <td>72 5.54</td> <td>74 5.75</td> <td>46 5.54</td> <td>45 5.63</td> <td>66 5.80</td> <td>51 5.86</td> <td>96 6.00</td> <td>80 6.18</td> <td>46 6.27</td> <td>23 6.6</td> <td>47 6.85</td> <td>32 6.72</td> <td></td>			Mn [mg/]	69 2.04	15 2.64	14 3.74	00 3.90	94 4.03	43 3.77	59 4.11	53 4.13	22 4.36	65 4.57	48 4.81	82 5.17	72 5.54	74 5.75	46 5.54	45 5.63	66 5.80	51 5.86	96 6.00	80 6.18	46 6.27	23 6.6	47 6.85	32 6.72	
Ition:			, [mg/l	5 1262.	2 1255.	1261.	5 1264.	5 1256.	1270.	2 1253.	1245.	1253.	2 1255.	1257.	5 1264.	8 1259.	1264.	5 1268.	5 1242.	1259.	1250.	1258.	3 1264.	1257.	1258.	1269.	1265.	
Ition: Ition: <thition:<< td=""><td>4607</td><th>507-1</th><th>Li [mg/I</th><td>4 0.175</td><td>2 0.182</td><td>8 0.171</td><td>5 0.165</td><td>8 0.166</td><td>0 0.169</td><td>3 0.172</td><td>3 0.16</td><td>6 0.164</td><td>2 0.162</td><td>1 0.160</td><td>8 0.166</td><td>5 0.158</td><td>0 0.143</td><td>0 0.155</td><td>5 0.136</td><td>9 0.151</td><td>7 0.149</td><td>1 0.154</td><td>0 0.148</td><td>6 0.14</td><td>0 0.14</td><td>6 0.14</td><td>7 0.13</td><td></td></thition:<<>	4607	507-1	Li [mg/I	4 0.175	2 0.182	8 0.171	5 0.165	8 0.166	0 0.169	3 0.172	3 0.16	6 0.164	2 0.162	1 0.160	8 0.166	5 0.158	0 0.143	0 0.155	5 0.136	9 0.151	7 0.149	1 0.154	0 0.148	6 0.14	0 0.14	6 0.14	7 0.13	
Ition:	GeoB14	ieoB14(L] [mg/I	426.6	443.6	446.1	445.9	444.7	422.2	441.1	440.6	446.3	443.7	440.8	436.8	440.8	442.7	437.7	427.6	436.8	432.8	434.6	435.8	440.8	443.2	431.2	429.2	
Ition:		0	L] [mg/]	7 0.01	84 0.04	0.03	57 0.13	0.01	0.86	73 0.01	17 0.03	0.02	57 0.02	0.02	24 0.02	9 0.02	33 0.02	25 0.01	55 0.10	90.0	0.12	0 0.15	57 0.37	0.29	5 0.31	0.25	78 0.07	
Ition:			L] [mg/]	7 398.1	4 398.3	8 399.9	8 400.5	9 400.6	7 406.9	4 395.7	4 394.4	6 398.0	6 399.5	7 398.0	5 403.2	4 404.2	5 406.3	0 407.2	6 399.6	0 406.0	3 404.0	3 407.9	0 409.6	3 411.0	\$ 412.3	\$ 419.0	\$ 417.7	
Ition: Ition: <thition:<< td=""><td></td><th></th><th>L] [mg/]</th><td>0.03</td><td>9 0.04</td><td>3 0.03</td><td>3 0.03</td><td>9 0.03</td><td>3 0.03</td><td>2 0.03</td><td>3 0.0</td><td>5 0.03</td><td>0.03</td><td>0.03</td><td>5 0.03</td><td>2 0.03</td><td>0.03</td><td>7 0.03</td><td>5 0.03</td><td>4 0.03</td><td>7 0.03</td><td>0.03</td><td>3 0.03</td><td>3 0.03</td><td>0.03</td><td>4 0.03</td><td>0.03</td><td></td></thition:<<>			L] [mg/]	0.03	9 0.04	3 0.03	3 0.03	9 0.03	3 0.03	2 0.03	3 0.0	5 0.03	0.03	0.03	5 0.03	2 0.03	0.03	7 0.03	5 0.03	4 0.03	7 0.03	0.03	3 0.03	3 0.03	0.03	4 0.03	0.03	
Ition:			B L] [mg/]	5 4.61	4.69	9.4.63	1 4.63	2 4.59	9 4.38	2 4.72	4.73	7 4.75	4.7	4.59	2 4.55	8 4.52	5 4.50	6 4.47	5 4.30	4.4	4.4	3 4.51	4.53	4.38	4.55	2 4.4	3 4.35	
Ition: Ition: Ition: Ition: Ition			L] [mg/	5 0.0	0.0	0 0.10	4 0.0	5 0.13	9 0.0	5 0.02	6 0.1	5 0.0′	6 0.1	7 0.0	0.0-	1 0.0	2 0.0	0.0-	2 0.1:	2 0.1	4 0.1	9 0.13	8 0.0	9 0.1	0.1	9 0.0	3 0.13	
Ition: Ition: Ition: Ition: Ition			+ PO4	5 0.3	5 0.3	5 0.4	5 0.4	5 0.4:	5 0.4	5 0.4	5 0.4	5 0.4	5 0.4	5 0.4′	5 0.4	5 0.5	5 0.5	5 0.5	5 0.5	5 0.5	5 0.5	7 0.4	9 0.4	5 0.3	8 0.4	2 0.3	5 0.3	
Ition: Alkr NH nth Fh Mkr NH nth Fh mult NH nth Fh mult NH nth Fh mult NH nth mult NH mult NH nth mult mult mult mult mult 10 7.35 177.0 294 <0. 7 7.35 243.0 3.01 <0. 7 7.35 243.0 3.01 <0. 3 7.50 243.0 3.01 <0. 8 7.50 243.0 3.03 <0. 8 7.50 288.0 3.03 <0. 10 7.51 126.0 3.03 <0. 11 7.50 289.0 3.03 <0. 11 7.51 115.0 3.03 <0. 12 7.51 115.0 3.03 <0. 14 <td></td> <th></th> <th>t⁺ Fe² [mg/]</th> <td>1 <0.6</td> <td>1 <0.6</td> <td>1 <0.6</td> <td>1 <0.6</td> <td>1 <0.0</td> <td>1 <0.0</td> <td>1 <0.0</td> <td>1 <0.0</td> <td>1 <0.0</td> <td>1 <0.6</td> <td>1 <0.6</td> <td>1 <0.0</td> <td>1 <0.6</td> <td>1 <0.6</td> <td>1 <0.0</td> <td>1 <0.0</td> <td>1 <0.0</td> <td>1 <0.0</td> <td>1 0.1</td> <td>1 0.35</td> <td>1 0.4;</td> <td>5 0.36</td> <td>7 0.22</td> <td>9.0> 9.0</td> <td></td>			t ⁺ Fe ² [mg/]	1 <0.6	1 <0.6	1 <0.6	1 <0.6	1 <0.0	1 <0.0	1 <0.0	1 <0.0	1 <0.0	1 <0.6	1 <0.6	1 <0.0	1 <0.6	1 <0.6	1 <0.0	1 <0.0	1 <0.0	1 <0.0	1 0.1	1 0.35	1 0.4;	5 0.36	7 0.22	9.0> 9.0	
Ition: All nth F All nth F F All nth ImV1 ImV1 Im 0 7.35 177.0 29. 7 7.35 177.0 29. 7 7.35 241.0 29. 7 7.35 243.0 30. 3 7.50 240.0 29. 3 7.50 240.0 29. 3 7.50 240.0 29. 8 7.50 240.0 29. 9 7.52 197.0 29. 9 7.52 197.0 29. 9 7.51 115.0 30. 9 7.51 150.0 30. 9 7.51 115.0 30. 9 7.61 -77.0 30. 9 7.61 -77.0 30. 9 7.64 -77.0 31. 9			ol/ [mg/	4 <0,	4 <0,	5 <0,	1 <0,	,0> 0,	9 <0,	2 <0,	3 <0,	3 <0,	5 <0,	7 <0,	2 <0,	5 <0,	4 <0,	5 <0,	5 <0,	,0> 0	9 <0,	3 <0,	,0> 0	s <0,	4 0.3;	9 0.3	2 0.35	
ition: ition: n PH Et n PH Imv n 7 7.35 234. 7 7.35 241. 260. 7 7.35 243. 234. 7 7.35 243. 234. 7 7.35 243. 260. 3 7.50 244. 260. 3 7.50 244. 260. 8 7.50 208. 209. 9 7.51 125. 125. 90 7.51 125. 125. 91 7.61 115. 125. 93 7.61 125. 209. 93 7.61 27.53 151. 93 7.61 27.53 151. 94 7.61 27.41 28.0 94 7.64 48.7. 28.1. 94 7.64 48.7. 28.8.1. 94 <				0 2.94	0 2.94	0 2.96	0 3.0	0 3.0(0 2.95	0 3.02	0 3.15	0 3.05	0 2.96	0 2.97	0 3.02	0 3.05	0 3.04	3.05	3.05	0 3.10	0 3.05	0 3.15	0 3.1(# 3.18	00 3.14	# 3.15	3.22	
rtion: rentring the transmission of transmission		er:	Eh	5 177.	3 241.	5 234.	5 243.	1 260.) 240.) 208.	2 180.	2 197.	5 229.	1 150.	2 125.	1 124.	1 115.	3 15.(4 87.(-80.	4 -57.	1 -77.	1 -94.	2	4 -58.(4 ###	' ~	
	tion:	re numt	n pH	0 7.35	4 7.25	7 7.35	7 7.35	0 7.41	3 7.5(8 7.5(0 7.52	5 7.52	6 7.55	3 7.61	10 7.52	74 7.51	15.7.5	32 7.55	54 7.54	7.55	36 7.64	14 7.6	50 7.61	50 7.62	50 7.84	50 7.74	1.78	

r.

		SO4 ²⁻ [mg/L]	2733	2751	2794	3068	2760	2775	2762	2770	2776	2761	2751	2745	2753	2763	2750	2774	2766	2757	2771	2760	2762	2783	
		Br' [mg/L]	68.8	67.8	68.9	74.2	68.7	68.9	69.69	66.6	68.9	69.0	68.5	68.8	70.2	69.69	69.4	68.9	70.0	69.0	68.6	69.2	68.8	71.2	
		CI ⁻ [mg/L]	19832	19845	20139	22134	19947	20080	19925	19946	19997	20056	19974	19995	20077	20156	20029	20058	20057	20055	20050	20086	20067	20134	
		F- [mg/L]	1.94	1.70	2.07	2.38	3.05	1.68	2.17	1.68	2.39	1.59	2.47	2.73	2.25	1.91	2.02	2.86	1.67	2.53	2.10	2.00	2.51	1.66	
		Sr [mg/L]	7.29	7.62	7.53	7.61	7.59	7.61	7.61	7.68	7.65	7.71	7.62	7.65	7.62	7.58	7.55	7.75	8.10	7.71	7.76	7.68	7.80	7.78	
		Si [mg/L]	12.16	14.39	14.30	14.58	15.00	13.62	14.80	14.67	14.93	14.24	14.45	14.55	15.38	15.36	15.56	15.52	15.59	15.78	15.55	16.00	15.83	16.20	
		S [mg/L]	852	847	839	850	840	854	844	843	841	853	844	851	834	846	850	849	845	849	858	846	851	843	
		P [mg/L]	0.2	0.1	0.2	0.2	0.1	0.2	0.1	0.1	0.2	0.1	0.2	0.1	0.2	0.1	0.2	0.1	-0.1	0.1	-0.1	0.2	0.2	0.1	
		Na [mg/L]	11269	11334	11269	11294	11310	11399	11339	11359	11264	11308	11339	11403	11528	11508	11559	11508	11578	11542	11488	11568	11447	11456	
		Mn [mg/L]	2.383	3.804	4.049	4.412	4.680	5.251	4.806	5.11	5.283	5.757	6.160	6.189	5.669	5.821	5.772	6.025	5.956	5.700	5.785	5.672	5.63	5.79	
		Mg [mg/L]	1255.21	1252.03	1250.37	1258.75	1249.87	1276.66	1251.31	1260.66	1260.98	1280.93	1281.14	1282.83	1260.74	1264.23	1263.42	1268.44	1276.84	1273.47	1283.38	1271.23	1272.20	1293.19	
8		Li [mg/L]	0.184	0.167	0.165	0.166	0.170	0.161	0.164	0.160	0.162	0.145	0.149	0.158	0.148	0.150	0.162	0.149	0.149	0.156	0.147	0.146	0.153	0.151	
oB1460	B14608	K [mg/L]	427.47	454.05	447.44	451.95	452.57	421.04	451.41	449.77	450.36	423.54	423.11	422.75	451.19	449.64	451.72	450.26	451.85	452.56	446.08	454.00	449.03	424.88	
Ge	Geo	Fe [mg/L]	0.02	0.01	0.01	0.00	0.02	0.05	0.02	0.01	0.02	0.01	0.02	0.02	0.01	0.01	0.01	0.04	4.68	0.02	0.03	0.01	0.05	0.11	
		Ca [mg/L]	396.26	397.68	396.69	398.60	397.25	397.35	401.01	402.89	402.11	401.29	397.60	398.72	400.82	401.09	401.99	405.93	420.39	406.90	409.28	406.65	409.30	404.24	
		Ba [mg/L]	0.035	0.034	0.032	0.037	0.031	0.031	0.031	0.030	0.029	0.030	0.029	0.030	0.028	0.029	0.027	0.027	0.028	0.028	0.027	0.027	0.034	0.044	
		B [mg/L]	4.68	4.76	4.75	4.78	4.74	4.40	4.58	4.58	4.60	4.41	4.42	4.43	4.58	4.77	4.79	4.59	4.62	4.66	4.56	4.74	4.56	4.41	
		Al [mg/L]	0.12	-0.01	0.14	0.11	-0.06	0.07	0.04	0.09	0.06	0.14	0.01	-0.02	-0.05	0.05	0.06	0.02	0.06	0.07	0.05	-0.01	0.10	0.10	
		PO4 ³⁻ [mg/L]]	0.33	0.36	0.38	0.34	0.31	0.27	0.30	0.28	0.25	0.22	0.23	0.20	0.21	0.22	0.24	0.21	0.31	0.20	0.20	0.19	0.18	0.17	
		Fe ²⁺ [mg/L]	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
		NH4 ⁺ [mg/L]	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	
		Alk _T [mmol/ L]	2.80	2.92	2.94	2.94	2.93	2.76	2.98	2.95	3.12	3.20	2.78	2.73	2.99	2.92	3.00	2.94	2.96	2.93	2.94	2.90	2.92	2.76	
		Eh [mV]	226.0	123.2	197.0	175.0	205.0	220.0	182.0	200.0	185.0	196.0	216.0	219.0	206.0	208.0	185.0	231.0	156.0	208.0	245.0	262.0	250.0	227.0	mined
	umber	Hq	7.32	7.55	7.54	7.57	7.99	7.95	7.60	7.56	7.58	8.02	7.90	8.00	7.68	7.59	7.62	7.62	7.62	7.60	7.64	7.58	7.62	7.83	ot detei
Station	Core ni	Depth/ cm	12	43	80	125	176	193	213	280	348	365	405	445	453	506	538	580	638	701	706	711	733	809	n.d. : n

Station	::										Ge	oB146(80											
Core n	umber										Geo	B14608	3-2											
Depth/	n.	Eh	Alk _T [mmol/	'*'HN	Fe^{2+}	P04 ³⁻	Ŋ	в	Ba	Ca	Fe	К	Li	Mg	Mn	Na	Ρ	s	si	sr	4	Ċ	Br'	SO_4^{2-}
сш	ц	[mV]	L]	[mg/L]	[mg/L]	[[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	mg/L]	[mg/L]	[mg/L]	[mg/L]							
BW	n.d.	n.d.	2.67	<0.5	<0.06	0.25	0.02	4.29	0.022	404.17	0.02	401.71	0.162	1283.60	-0.005	11356	0.2	848	3.86	7.86	n.d.	19834	66.8	2971
9	7.24	354.0	2.68	<0.5	<0.07	0.28	0.06	4.64	0.035	395.10	0.02	433.67	0.294	1251.73	-0.009	11404	0.1	857	10.34	7.39	n.d.	20287	63.0	2994
12	7.37	272.0	2.73	<0.5	<0.08	0.33	0.06	4.57	0.037	401.97	0.02	438.31	0.187	1273.00	1.231	11393	0.1	845	10.99	7.63	n.d.	19672	62.9	2570
18	7.45	228.0	2.79	<0.5	<0.0>	0.35	0.03	4.57	0.038	401.05	0.01	435.93	0.177	1269.71	2.316	11386	0.2	865	11.53	7.68	n.d.	19954	65.0	2971
24	7.51	207.0	2.82	<0.5	<0.10	0.36	0.02	4.57	0.039	403.50	0.01	434.51	0.177	1278.47	2.936	11387	0.1	848	11.81	7.75	n.d.	19788	63.8	2950
30	7.53	181.0	2.84	<0.5	<0.11	0.36	-0.06	4.57	0.039	403.02	0.01	435.92	0.184	1274.97	3.366	11364	0.2	848	12.18	7.75	n.d.	19580	60.7	2567
n.d. : r	not dete	rmined																						

		r SO4 ²⁻ IL] [mg/L]	0 2813	3 2750	0 2928	9 2760	3 2736	8 2736	9 2739	8 2746	0 2740	5 2756	4 2733	5 2738	8 2696
		L] [mg/	13 67.	94 67.	99 70.	58 66.	72 66.	12 66.	04 67.	25 67.	41 67.	92 67.	54 67.	67 68.	67 67.
		L] [mg/	203	197	210	199	197	198	199(1992	199	200	198	199	199
		F- [mg/l	1.91	2.15	3.06	2.23	1.96	1.60	1.91	1.64	1.62	1.82	1.79	1.30	1.74
		Sr [mg/L	7.68	7.64	7.63	7.57	7.67	7.81	7.71	7.59	7.84	7.79	7.92	7.87	7.54
		Si [mg/L]	12.87	12.66	13.57	13.72	13.97	14.20	14.77	14.15	15.61	15.88	15.41	16.00	16.26
		S [mg/L]	839	846	839	837	831	844	840	808	839	835	844	834	829
		P [mg/L]	0.2	0.1	0.1	0.2	0.0	0.1	0.1	-6.7	0.1	0.1	0.1	0.0	0.0
		Na [mg/L]	11363	11325	11451	11281	11411	11443	11452	11118	11472	11395	11480	11392	11462
		Mn [mg/L]	1.619	2.269	2.394	2.330	2.241	2.190	2.165	2.112	2.149	2.097	2.066	1.950	2.168
		Mg [mg/L]	1258.90	1267.09	1258.91	1254.95	1259.41	1268.06	1265.93	1230.33	1264.00	1252.11	1272.23	1264.15	1276.94
60	9-1	Li [mg/L]	0.182	0.175	0.166	0.171	0.160	0.169	0.162	0.156	0.154	0.153	0.156	0.151	0.145
oB146	B1460	K [mg/L]	450.31	427.33	443.54	439.03	443.98	444.46	448.05	429.85	451.59	448.78	435.41	436.60	426.31
ğ	Geo	Fe [mg/L]	0.01	0.03	0.01	0.01	0.05	0.01	0.04	0.04	0.01	0.01	0.02	0.01	0.02
		Ca [mg/L]	400.49	401.21	400.48	398.15	403.99	410.26	408.93	401.27	414.17	411.14	417.87	411.96	398.89
		Ba [mg/L]	0.039	0.037	0.032	0.140	0.034	0.027	0.028	0.025	0.025	0.022	0.023	0.025	0.023
		B [mg/L]	4.70	4.45	4.54	4.45	4.45	4.52	4.65	4.39	4.71	4.68	4.55	4.57	4.55
		Al [mg/L]	0.04	0.11	0.02	0.03	0.04	0.06	0.10	0.09	0.15	0.06	0.05	0.10	0.16
		PO4 ³⁻ [mg/L]]	0.40	0.37	0.34	0.32	0.28	0.26	0.26	0.20	0.18	0.17	0.15	0.17	0.14
		Fe ²⁺ [mg/L]	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0.05
		NH4 ⁺ [mg/L]	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0.5
		Alk _T [mmol/L]	2.81	2.87	2.87	2.93	2.93	2.92	2.97	2.97	2.98	2.94	2.99	2.79	2.76
		Eh [mV]	216.5	232.2	199.8	167.0	183.4	173.5	170.0	174.0	214.0	173.5	148.4	242.0	175.0
	umber	Ηd	7.45	7.55	7.55	7.58	7.59	7.62	7.56	7.58	7.58	7.49	7.71	7.53	7.58
ation	Ore n)epth/ cm	6	16	54	100	156	201	254	321	422	478	522	580	649

		SO4 ²⁻ [mg/L]	2723	2761	2733	2739	2736	2735	2738	2764	2737	2759	2750	2739	2822	2751	2751	2760	2752	2752	2770	
		Br ⁻ [mg/L]	67.5	69.2	71.4	6.99	68.7	69.4	67.3	70.4	67.5	68.9	67.5	70.5	69.2	67.1	67.3	67.7	69.0	67.9	68.4	
		CI ⁻ [mg/L]	19523	19705	19518	19551	19537	19536	19566	19692	19583	19613	19644	19601	20092	19660	19689	19692	19681	19689	19717	
		F- [mg/L]	n.d.																			
		Sr [mg/L]	7.56	7.63	7.69	7.73	7.68	7.79	7.78	7.73	7.80	7.78	7.79	7.75	7.83	7.82	7.87	7.74	7.58	7.41	7.68	
		Si [mg/L]	12.26	13.88	13.96	14.12	14.55	14.55	14.58	14.70	14.71	14.64	14.84	14.71	15.00	15.33	15.01	14.91	14.62	14.98	15.82	
		S [mg/L]	883	890	887	893	891	893	875	877	891	892	884	877	891	884	883	891	858	846	863	
		P [mg/L]	0.0	0.2	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.0	0.1	0.1	0.0	0.1	0.1	0.1	0.0	
		Na [mg/L]	11199	11269	11285	11307	11200	11255	11179	11278	11326	11361	11241	11316	11272	11402	11394	11193	10923	10856	11111	
		Mn [mg/L]	2.637	2.157	2.188	2.138	2.111	2.054	1.788	1.794	1.677	1.554	1.487	1.367	1.335	1.272	1.209	1.086	0.948	0.795	0.634	
		Mg [mg/L]	306.04	298.10	301.58	306.67	298.44	307.64	305.94	303.31	300.75	310.90	304.37	298.02	306.93	302.43	311.40	292.65	265.30	248.60	278.81	
0		Li mg/L]	0.173 1	0.172 1	0.172 1	0.173 1	0.169 1	0.163 1	0.167 1	0.165 1	0.170 1	0.163 1	0.160 1	0.171 1	0.162 1	0.155 1	0.162 1	0.155 1	0.153 1	0.150 1	0.160 1	
B1461	314610	K 	426.04	44.62	42.33	44.34	45.91	452.16	448.96	44.56	448.12	445.82	42.46	144.44	443.94	448.19	45.44	439.87	428.27	425.44	446.09	
Geo	Geol	Fe mg/L]	0.01	0.00	0.01	0.01	0.76	0.01	0.00	0.08	0.00	-0.01	0.00	0.01	0.02	0.01	0.02	0.00	0.00	0.00	0.01	
		Ca mg/L]	404.51	401.35	403.45	405.79	402.43	407.03	407.48	404.88	408.07	408.04	406.76	405.97	408.84	408.02	409.87	404.25	395.63	389.32	400.47	
		Ba mg/L]	0.036	0.035	0.033	0.034	0.034	0.031	0.030	0.031	0.027	0.031	0.027	0.027	0.029	0.029	0.029	0.025	0.023	0.025	0.025	
		B mg/L] [4.63	4.75	4.70	4.68	4.69	4.71	4.70	4.66	4.65	4.67	4.63	4.65	4.62	4.69	4.72	4.61	4.52	4.54	4.64	
		Al mg/L]	0.05	0.01	-0.03	-0.04	0.03	0.02	0.06	0.01	0.03	0.07	0.06	-0.06	0.06	0.07	0.00	-0.02	0.07	0.13	0.04	
		PO4 ³⁻ mg/L]]	0.34	0.36	0.35	0.34	0.32	0.32	0.30	0.31	0.29	0.27	0.26	0.25	0.24	0.23	0.22	0.20	0.18	0.16	0.16	
		Fe ²⁺ mg/L]	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	
		NH4 ⁺ [mg/L]	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	
		Alk _T 1mol/L	2.86	2.87	2.88	2.91	2.93	2.91	2.91	2.93	2.94	2.93	n.d.	2.95	2.92	2.90	2.93	2.92	2.93	2.96	2.93	
		Eh mV]	13.0	72.0	97.0	76.0	10.0	02.0	15.0	85.0	0.00	19.0	60.0	10.0	37.0	72.0	92.0	74.0	75.0	98.0	37.0	nined
	mber:	Hd	7.45 2	7.54 1	7.59 1	7.57 1	7.59 2	7.57 2	7.63 2	7.58 1	7.56 2	7.62 1	7.62 1	7.59 2	7.63 1	7.63 1	7.58 1	7.60 1	7.60 1	7.58 1	7.53 2	t deterr
tation:	Ore nu)epth/ cm	10	33	52	72	93	Ξ	144	177	209	247	277	311	347	381	413	462	511	562	611	.d. : no

		SO4 ²⁻ [mg/L]	2721	2752	2735	2734	2739	2744	2748	2740	2748	2740	2746	2734	2760	2754	2753	2740	2754	2896	2861	2751	2991	2727	2742	
		Br' [mg/L]	67.6	67.9	66.8	66.5	67.1	67.4	68.4	67.4	67.1	68.3	67.4	67.2	67.4	67.7	67.7	67.3	67.5	67.6	6.99	67.9	72.0	67.2	67.7	
		CI ⁻ [mg/L]	19271	19444	19373	19339	19385	19405	19562	19411	19426	19422	19473	19377	19564	19612	19583	19476	19636	19670	19542	19535	21413	19503	19589	
		F ⁻ [mg/L]	1.3	1.3	2.0	1.6	1.6	1.7	2.1	1.5	2.4	2.1	1.6	1.9	1.9	1.8	1.9	1.2	1.9	2.4	1.7	1.7	n.d.	1.1	1.6	
		Sr [mg/L]	7.59	7.69	7.63	7.64	7.69	7.75	7.77	7.78	7.79	7.80	7.73	7.75	7.61	7.72	7.80	7.82	7.78	7.18	7.81	7.84	7.75	7.65	7.67	
		Si [mg/L]	13.29	13.37	13.87	13.87	13.89	14.09	14.75	14.97	15.46	15.32	15.56	15.76	15.52	17.18	16.39	16.37	16.88	15.37	16.80	16.48	16.98	17.22	17.41	
		S [mg/L]	877	877	881	866	877	877	876	887	882	874	881	875	852	895	874	881	888	815	887	885	876	872	896	
		P [mg/L]	0.0	0.1	0.1	0.2	0.0	0.1	0.0	0.1	0.2	0.1	0.1	0.0	0.1	0.1	0.0	0.1	0.1	0.0	0.0	0.2	0.1	0.2	0.0	
		Na [mg/L]	11240	11144	11208	11102	11173	11229	11258	11253	11356	11303	11308	11225	11065	11274	11390	11279	11395	10543	11370	11382	11368	11292	11370	
		Mn [mg/L]	4.025	5.464	6.853	7.892	8.280	8.238	7.914	7.511	7.184	6.741	6.422	5.872	5.503	5.288	4.998	4.410	2.825	2.070	2.203	2.202	2.042	1.894	1.604	
		Mg [mg/L]	1287.35	1288.56	1274.33	1280.12	1281.80	1293.33	1294.61	1296.35	1299.80	1298.28	1290.82	1291.22	1265.19	1288.67	1294.18	1295.44	1299.99	1208.80	1305.67	1310.45	1300.95	1289.41	1299.40	
11	1-1	Li [mg/L]	0.177	0.165	0.167	0.165	0.160	0.159	0.157	0.159	0.154	0.161	0.159	0.157	0.148	0.169	0.167	0.159	0.161	0.149	0.161	0.150	0.171	0.160	0.169	
oB146	B1461	K [mg/L]	444.18	443.72	453.38	452.50	451.92	449.98	449.61	447.81	450.76	443.55	444.60	451.10	438.53	460.77	458.56	449.66	450.51	414.31	450.39	443.52	448.32	448.97	451.66	
g	Geo	Fe [mg/L]	0.01	0.03	0.08	0.01	0.07	0.02	0.01	0.01	0.02	0.02	0.03	0.07	0.08	0.12	0.03	0.02	0.02	0.01	0.00	0.01	0.02	0.01	0.02	
		Ca [mg/L]	400.05	401.68	399.28	398.75	401.05	403.66	405.76	406.11	407.32	407.55	404.54	406.27	398.22	405.35	409.12	409.19	409.40	381.35	412.78	415.40	410.72	405.89	407.86	
		Ba [mg/L]	0.045	0.041	0.038	0.035	0.036	0.031	0.032	0.033	0.032	0.031	0.030	0.033	0.030	0.043	0.033	0.030	0.031	0.029	0.030	0.030	0.037	0.029	0.030	
		B [mg/L]	4.79	4.63	4.71	4.85	4.69	4.68	4.68	4.65	4.68	4.65	4.66	4.65	4.61	4.74	4.75	4.71	4.77	4.41	4.80	4.68	4.80	4.81	4.81	
		Al [mg/L]	0.02	0.12	0.10	-0.05	0.16	0.03	0.08	0.06	0.02	0.12	0.09	-0.04	0.01	0.07	0.12	0.00	0.03	-0.01	0.08	0.07	0.02	0.05	-0.01	
		PO4 ³⁻ [mg/L]]	0.45	0.50	0.54	0.55	0.55	0.53	0.49	0.46	0.41	0.39	0.37	0.35	0.34	0.36	0.30	0.26	0.24	0.22	0.23	0.25	0.22	0.20	0.18	
		Fe ²⁺ [mg/L]	<0,05	<0,05	0.08	<0,05	0.05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	0.06	0.07	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	
		NH4 ⁺ [mg/L]	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	
		Alk _T [mmol/L]	2.87	2.89	2.95	2.96	2.96	2.97	2.93	2.95	2.94	3.04	2.97	3.02	3.06	3.00	3.00	3.01	2.96	2.94	2.98	2.97	2.95	2.90	2.90	
		Eh [mV]	180.0	140.0	-82.0	169.0	-66.0	-13.5	75.0	185.0	138.0	169.0	169.1	169.1	-57.8	n.d.	-77.1	168.0	196.0	308.0	295.0	273.0	284.0	278.0	244.0	rmined
::	umber	Ηd	7.49	7.57	7.73	7.59	7.62	7.69	7.62	7.59	7.58	7.58	7.59	7.73	7.72	n.d.	7.75	7.59	7.51	7.52	7.52	7.60	7.47	7.60	7.55	not dete
Statior	Core n	Depth/ cm	10	41	75	113	160	193	243	301	349	393	430	463	505	524	541	574	634	691	697	703	710	717	766	n.d. : r

_	_	-			_	_	_	_	_		_	_		_	_	_	_			_	_	_	_	_	_
		SO4 ²⁻	[mg/L]	2727	2716	2732	2738	2732	2730	2733	2728	2736	2743	2736	2741	2735	2739	2745	2737	2735	2741	2734	2735	2745	
		Br'	[mg/L]	66.0	63.5	66.5	68.7	66.4	64.7	68.6	67.1	64.4	68.3	66.3	6.99	65.8	62.0	65.4	65.5	66.4	64.3	66.6	67.6	66.3	
		CI-	mg/L]	19424	19462	19470	19491	19503	19505	19496	19519	19549	19540	19566	19553	19569	19597	19603	19601	19599	19606	19601	19639	19634	
		4 I	mg/L]	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	
		Sr 	mg/L]	7.70	7.73	7.81	7.82	14.00	7.82	7.84	7.93	7.94	7.93	7.95	7.99	7.98	8.00	8.03	8.07	8.15	8.20	8.14	8.11	8.12	
		Si I	l [1/gm	13.46	14.31	15.02	14.61	27.71	15.34	15.33	15.39	15.27	15.15	15.21	15.33	15.38	15.39	15.62	15.35	15.45	15.81	16.42	16.21	16.87	
		S I I	mg/LJ	871	886	893	880	1618	896	889	897	900	882	876	885	889	901	882	895	889	897	889	891	912	
		P 1	ng/LJ [1	0.1	0.0	0.2	0.1	0.2	0.1	0.1	0.1	0.0	0.2	0.1	0.1	0.1	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.1	
		Na 1 L	ng/LJ II	1280	1434	1379	1395	0492	1381	1473	1370	1406	1347	1262	1321	1341	1456	1369	1427	1414	1551	1444	1420	1347	
		Mn 54	ng/LJ [T	.653 1	.532 1	1 160.9	.269 1	.171 2	1.298 1	1.705 1	6.167 1	.479 1	6.762 1	6.104 1	6.326 1	5.572 1	6.847 1	.927 1	.086 1	.223 1	.208 1	.087 1	1 616.9	6.782 1	
		Mg	ig/L] [I	93.12 1	92.62 2	04.31 3	00.45 3	08.07 7	00.66 4	03.81 4	04.85 5	10.95 5	11.11 5	98.73 6	01.20	02.79 6	03.34 6	01.76 €	07.85 7	13.51 7	15.58 7	10.57 7	12.51 6	01.32 6	
			g/L] [m	188 12	179 12	177 13	168 13	324 23	171 13	169 13	162 13	160 13	163 13	152 12	152 13	153 13	147 13	153 13	147 13	153 13	156 13	153 13	147 13	154 13	
14612	4612-1	75 75	E C	.27 0.	.68 0.	.94 0.	.36 0.	0.17 0.3	.64 0.	0.04 0.	.60 0.	.59 0.	0.21	.39 0.	.37 0.	.30 0.	.65 0.	.19 0.	.94 0.	.97 0.	.51 0.	.41 0.	.61 0.	.91 0.	
GeoB	GeoB1	i iii		0 463	1 468	1 468	2 464	1 849	1 466	0 466	0 468	3 463	3 460	7 462	2 464	01 461	1 463	1 468	0 464	1 466	0 470	0 478	0 471	0 478	
		E	LJ (mg	46 0.0	27 0.0	45 0.0	28 0.0	41 0.0	28 0.0	15 0.0	42 0.0	55 0.0	33 0.0	52 0.1	93 0.0	0.0-	41 0.0	75 0.0	0.0	14 0.0	91 0.0	50 0.0	14 0.0	12 0.0	
			l lmg/	7 401.4	401.2	5 403.4	3 405.2	5 718.4	406.2	407.	410.4	8 411.5	410.8	408.5	410.9	7 410.0	409.4	411.2	7 413.0	9 416.	8 416.9	8 414.5	5 415.	413.	
		Ba [mc/f	lmg/L	0.037	0.031	0.035	0.033	0.055	0.031	0.030	0.029	0.038	0.029	0.030	0.031	0.027	0.031	0.028	0.027	0.029	0.028	0.028	0.026	0.029	
		B	[mg/L	4.85	4.88	4.79	4.75	8.55	4.87	4.86	4.90	4.80	4.78	4.77	4.75	4.78	4.80	4.84	4.79	4.81	4.81	4.92	4.98	4.86	
		IN I	[mg/L]	0.02	0.09	0.09	0.01	0.14	0.04	0.04	0.06	0.03	0.05	0.02	0.05	-0.01	0.02	0.11	0.07	0.05	0.04	0.04	0.01	-0.05	
		PO4 ³⁻ [mg/L]]	0.27	0.28	0.26	0.25	0.25	0.25	0.23	0.21	0.21	0.21	0.19	0.21	0.19	0.17	0.18	0.18	0.17	0.16	0.16	0.15	0.14	
		Fe ²⁺	[mg/L]	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	
		NH4 ⁺	[mg/L]	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	
		Alk _T [mmol/L]	2.84	2.89	2.91	2.91	2.96	2.93	2.97	2.94	2.96	3.00	2.94	3.02	3.00	3.01	3.04	3.01	3.01	3.00	3.01	3.01	3.00	
		Eh		215.4	203.0	206.0	216.0	215.0	220.0	183.0	195.0	212.0	235.0	189.0	181.7	150.0	176.0	202.0	214.0	197.0	240.0	264.0	239.4	250.0	rmined
	umber	Ηd		7.46	7.51	7.57	7.58	7.57	7.54	7.64	7.64	7.64	7.65	7.59	7.65	7.62	7.62	7.58	7.59	7.60	7.63	7.61	7.55	7.66	ot dete
Station	Core n	Depth/	сш	26	76	126	176	226	276	326	376	426	476	526	576	626	676	726	778	824	876	936	976	1026	n.d. : n

										5 G	oB146	13											
Core nun	uber:									Geo	B1461	3-1											
Depth/	H Eh	Alk _T [mmol/L	NH4 ⁺	Fe ²⁺	PO ₄ ³⁻ [mg/L]	IA I	B	Ba	Ca	Fe	K [mg/L	Li	Mg	Mn	Na	P I	S	Si I	Sr Sr	F-	CI-	Br'	SO4 ²⁻
cm	[mv]	_	[mg/L]	[mg/L]	_	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	_	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	mg/L]	mg/L]	mg/L]	mg/L]	mg/L]
10 7.	33 223.0	2.86	<0,5	<0,05	0.32	0.00	4.88	0.040	399.86	0.01	455.97	0.197	1293.68	1.208	11218	0.1	888	13.21	7.68	1.1	19702	68.8	2712
60 7.	48 237.0	2.85	<0,5	<0,05	0.31	0.05	4.71	0.031	401.31	0.00	455.14	0.181	1288.97	1.425	11193	0.1	889	13.38	7.72	n.d.	20544	70.1	2681
90 7	50 199.0	2.91	<0,5	<0,05	0.30	0.02	4.73	0.030	406.47	0.01	458.69	0.172	1298.53	1.523	11162	0.1	878	13.44	7.83	n.d.	20220	70.2	2904
120 7	51 246.0	2.93	<0,5	<0,05	0.29	-0.02	4.73	0.031	405.13	0.01	461.11	0.182	1302.39	1.525	11204	0.1	872	13.66	7.80	n.d.	20107	70.5	2881
180 7	51 248.0	2.91	<0,5	<0,05	0.27	0.13	4.72	0.068	407.39	0.17	456.50	0.171	1306.63	1.788	11302	0.1	874	14.15	7.83	n.d.	20299	70.1	2646
283 7.	49 225.0	2.93	<0,5	<0,05	0.26	0.07	4.75	0.028	406.88	0.01	456.02	0.173	1294.67	1.886	11156	0.0	885	13.98	7.81	1.1	19749	67.9	2719
383 7.	53 256.0	2.98	<0,5	<0,05	0.23	-0.06	4.81	0.027	410.68	0.01	458.90	0.166	1309.10	2.013	11318	0.1	893	14.52	7.82	n.d.	19998	68.0	2871
450 7.	55 250.0	3.00	<0,5	<0,05	0.21	0.01	4.82	0.025	410.86	0.02	464.45	0.173	1307.57	2.079	11357	0.0	897	15.06	7.85	n.d.	19627	66.5	2628
499 7.	41 251.0	2.80	<0,5	<0,05	0.21	-0.03	4.80	0.024	401.53	0.00	453.16	0.161	1306.90	2.205	11278	-0.1	883	14.78	7.76	n.d.	19688	67.8	2837
577 7.	64 245.0	2.77	<0,5	<0,05	0.19	0.01	4.81	0.024	401.39	0.72	456.96	0.154	1318.51	2.335	11283	0.1	887	15.10	7.74	n.d.	19763	68.2	2850
673 7.	64 202.0	2.76	<0,5	<0,05	0.17	0.13	4.74	0.025	402.20	0.02	452.40	0.157	1314.18	2.238	11281	0.1	876	15.34	7.78	1.2	19812	68.2	2720
n.d. : not	determin(p																					

			1	_	_	_	_		_	_	_		
		SO4 ²⁻ [mg/L]	2615	2796	2790	2619	2788	2836	2625	2793	2794	2633	
		Br' [mg/L]	69.69	68.5	68.5	66.6	69.7	71.5	66.6	79.0	71.0	71.3	
		CI ⁻ [mg/L]	19469	19528	19533	19501	19610	19976	19530	19633	19764	19636	
		F- [mg/L]	n.d.										
		Sr [mg/L]	7.84	7.93	7.97	8.08	8.08	8.23	8.28	8.42	8.45	8.35	
		Si [mg/L]	14.05	14.02	14.02	14.23	14.10	13.94	13.75	14.10	14.07	14.64	
		S [mg/L]	889	865	872	902	886	888	885	879	876	876	
		P [mg/L]	-0.2	-0.1	-0.1	-0.1	-0.1	-0.1	-0.2	-0.2	-0.2	-0.2	
		Na [mg/L]	11287	11226	11226	11281	11262	11295	11282	11303	11357	11284	
		Mn [mg/L]	2.642	3.649	4.794	5.949	6.938	7.565	7.866	7.921	7.666	7.388	
		Mg [mg/L]	1287.35	1289.36	1301.15	1302.42	1301.59	1312.87	1312.32	1311.50	1307.66	1303.97	
14	4-1	Li [mg/L]	0.179	0.173	0.164	0.169	0.160	0.158	0.146	0.144	0.151	0.149	
oB146	B1461	K [mg/L]	465.57	461.76	457.37	459.66	454.87	454.80	453.65	457.89	456.15	458.17	
Ge	Geo	Fe [mg/L]	0.02	0.05	0.01	0.02	0.03	0.02	0.02	0.02	0.02	0.02	
		Ca [mg/L]	403.94	407.02	409.51	413.15	411.87	416.53	416.78	419.87	420.62	418.51	
		Ba [mg/L]	0.035	0.035	0.029	0.030	0.030	0.030	0.027	0.027	0.025	0.023	
		B [mg/L]	5.14	4.90	4.77	4.84	4.86	4.82	4.84	4.86	4.88	4.96	
		Al [mg/L]	0.07	0.03	0.06	0.06	0.02	0.01	0.06	0.08	0.04	-0.02	
		PO 4 ³⁻ [mg/L]]	0.36	0.35	0.32	0.29	0.26	0.25	0.24	0.20	0.19	0.20	
		Fe ²⁺ [mg/L]	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	
		NH4 ⁺ [mg/L]	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	
		Alk _T [mmol/L]	3.00	2.99	3.07	3.08	3.05	3.11	3.11	3.11	3.10	3.10	
		Eh [mV]	189.0	205.0	160.0	241.0	145.0	154.0	218.0	220.0	250.0	225.0	rmined
	umber	Ηd	7.61	7.66	7.70	7.71	7.70	7.71	7.67	7.63	7.62	7.64	ot dete
Station	Core n	Depth/ cm	15	80	180	280	380	480	580	680	780	880	n.d. : n

÷.	_		-	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_
			S04 ²⁻	[mg/L]	2767	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	2816	2667	2847	2866	2709	2839	2795	2673	2787	2733	2842	2805	2785	2874	2826	2695	
			Br	mg/L	69.7	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	70.1	68.0	0.0	71.8	72.0	68.9	68.2	64.5	67.4	69.1	68.4	68.5	69.3	69.8	68.4	66.1	
			CI-	[mg/L]	19565	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	20174	19824	20600	20841	20265	20235	19883	19640	19653	20400	20273	19806	20698	20909	20387	19780	
			F-	mg/L]	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0.9	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.							
	_		Sr	mg/L]	7.89	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	7.94	8.00	7.98	7.95	8.03	8.05	8.03	8.12	8.09	8.09	8.15	8.07	8.21	8.13	8.20	8.18	
			Si	mg/L]	12.74	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	13.06	13.30	13.60	13.12	13.47	13.05	13.51	14.31	14.44	14.87	15.27	15.47	15.42	15.48	15.35	15.32	
	_		s	mg/L]	890	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	889	875	878	879	886	874	877	891	886	901	873	893	887	882	878	880	
	_		P	ng/L]	0.2	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0.1	0.3	0.2	0.1	0.1	0.2	0.2	0.2	0.1	0.1	0.2	0.2	0.1	0.1	0.1	0.1	
	_		Na	l [1/gu	1232	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	1136	1214	1252	1217	1162	1185	1229	1221	1272	1265	1312	1178	1302	1185	1302	1216	
	_		Mn	l [1/gu	5.029 1	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	7.899 1	9.311 1	0.447 1	0.452 1	0.910 1	0.488 1	0.632 1	0.202 1	1 668.0	9.505 1	3.363 1	7.626 1	7.882 1	7.800 1	7.508 1	7.071	
	_		Mg	l [1/gu	95.04	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	90.52	98.43	92.10	96.08 1	97.16 1	00.40 1	92.75 1	02.63 1	95.33 9	96.16 9	93.02	83.79	96.43	93.34	93.77	91.83	
	_	_	Li	g/L] [n	171 12	.d.	.d.	.d.	.d.	.d.	.d.	165 12	167 12	175 12	155 12	151 12	143 13	148 12	140 13	136 12	143 12	143 12	131 12	135 12	132 12	136 12	137 12	
	314615	14615-	K Ig/L	j [m	3.36 0.	ı.d. r	ı.d. r	3.30 0.	4.86 0.	1.26 0.	0.53 0.	4.41 0.	2.36 0.	0.33 0.	4.19 0.	0.68 0.	9.62 0.	9.35 0.	7.72 0.	0.62 0.	9.96 0.	4.17 0.	6.46 0.					
1	GeoE	GeoB1	Fe [m	g/L]	.00 44	u.b.	.d. n	nb.	nb.	n. .b.	u.b.	.06 46	.02 45	.00 47	01 45	0.01 45	.00 45	.06 45	0.01 45	.08 46	.02 45	32 45	.00 46	.01 46	.09 45	.02 46	.02 46	
	_		Ca M	g/L] [m	7.85 0	.d. n	.d. n	.d. п	.d. п	.d. n	.d. п	9.26 0	8.52 0	8.54 0	8.54 0	9.55 -0	1.54 0	1.31 0	5.60 -0	4.62 0	3.81 0	0 7.97 0	5.11 0	1.67 0	9.40 0	0.74 0	1.36 0	
	_		3a (g/L] [m;	943 40	d. n	d. n	943 40	943 403	35 40	35 40	36 40	35 41	132 41	032 41:	032 414	034 41	32 41'	30 41:	34 42	33 419	031 420	32 42					
	_		8	(/r] [m	75 0.0	d. n.	d. n.	76 0.0	02 0.0	96 0.0	04 0.0	95 0.0	78 0.0	73 0.0	80 0.0	76 0.0	84 0.0	75 0.0	63 0.(78 0.0	83 0.0	78 0.0	86 0.0					
	_			/L] [mg	03 4.	d. n.	d. n.	5 4.	03 5.0	5 4.9)4 5.(96 4.9	5 4.7	15 4.7	02 4.8)6 4.	15 4.8	5 4.7	5 4.0	8 4.	96 4.3	07 4.7	02 4.8					
	_		L] A	, mg	3 -0.	l. n.	l. n.	l.	l. n.	l.	l.	8 0.0	-0.	1 0.0	7 0.0	8 0.0	7 0.0	5 0.0	4 0.0	2 0.0	0.0	6 0.0	7 0.0	7 0.0	0.0	6 0.(9 0.0	
	_		PO +	u j	0.4	D.G	. n.c	D.G	. n.c		. n.c	5 0.4	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0 0.4	0.3	0.3	0.4	0.3	0.2	
	_		+ Fe ²	L] [mg/	5 ≤0,0	n.d	n.d	n.d	n.d	n.d	n.d	5 0.0	5 ≤0,0	5 ≤0,0	5 ≤0,0	5 ≤0,0	5 ≤0,0	5 ≤0,0	5 ≤0,0	5 <0,0	5 ≤0,0	5 0.3	5 ≤0,0	5 ≤0,0	5 ≤0,0	5 ≤0,0	5 <0,0	
	_		L NH4	[mg/]	<0>	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	<0>	<0>	<0>	<0>	<0>	<0,:	<0>	0,0	<0>	0,.0	<0>	<0,	<0,	<0>	<0,	<0;	
			Alk _T [mmol/]	-	3.05	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	3.06	3.04	2.98	3.01	2.97	2.93	2.92	2.94	2.89	2.90	2.93	2.93	2.88	2.94	2.86	2.92	F
		ï	Eh	mV	147.0	129.0	121.0	90.06	0.0	-20.0	-32.0	-74.0	132.0	49.5	138.0	141.0	101.0	75.0	171.0	106.0	156.0	-55.3	136.0	160.0	197.0	83.2	72.0	ermined
	ï	numbe	Ηq		7.68	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	7.81	7.74	7.80	7.73	7.71	7.71	7.67	7.63	7.73	7.62	7.72	7.78	7.58	7.62	7.70	7.65	not det
	Statio	Core 1	Depth/	cm	17	24	28	30	32	34	37	53	79	105	142	185	251	354	415	442	470	550	604	613	618	631	677	n.d. : I

Core n	: mher										Geo	B1461	6-1											
Depth/ cm	Hq	Eh [mV]	Alk _T [mmol/L	NH4 ⁺ [mg/L]	Fe ²⁺ [mg/L]	PO 4 ³⁻ [mg/L]	Al [mg/L]	B [mg/L]	Ba mg/L]	Ca [mg/L]	Fe [mg/L]	K [mg/L	Li [mg/L]	Mg [mg/L]	Mn [mg/L]	Na [mg/L]	P [mg/L]	S [mg/L]	Si [mg/L]	Sr mg/L] [F- mg/L] [CI ⁻	Br' mg/L] [SO4 ²⁻ mg/L]
15	7.74	73.0	3.07	<0,5	<0,05	0.47	0.05	4.81	0.043	406.01	0.00	439.51	0.177	1285.97	6.359	11063	0.1	874	13.30	7.91	n.d.	20269	72.7	2863
40	7.90	27.2	3.05	<0,5	<0,05	0.50	0.03	4.83	0.043	406.45	0.02	448.17	0.179	1283.49	7.957	11115	0.1	882	13.39	7.95	n.d.	20480	73.6	2708
105	7.75	172.0	3.03	<0,5	<0,05	0.55	0.03	5.04	0.035	403.76	0.20	444.19	0.167	1285.17	10.101	11180	0.2	880	13.60	7.86	n.d.	20298	71.9	2866
186	7.74	150.0	2.98	<0,5	<0,05	0.58	-0.02	4.79	0.037	409.96	0.01	444.07	0.164	1291.72	10.478	11106	0.1	872	13.55	8.12	n.d.	19865	71.2	2809
259	7.72	159.0	3.00	<0,5	<0,05	0.56	0.02	4.77	0.033	410.94	0.05	447.28	0.149	1286.74	10.201	11148	0.1	851	13.94	8.15	n.d.	20234	70.2	2673
326	7.67	144.0	2.88	<0,5	<0,05	0.51	0.03	4.77	0.031	411.92	0.00	447.89	0.156	1290.84	9.803	11180	0.1	876	14.17	8.19	n.d.	19872	71.6	2838
397	7.60	182.0	2.89	<0,5	<0,05	0.48	0.15	4.88	0.031	418.25	0.01	454.12	0.146	1291.56	9.295	11250	0.2	870	14.71	8.29	n.d.	19750	69.7	2807
407	7.74	127.0	2.89	<0,5	<0,05	0.47	0.04	4.78	0.030	415.60	0.01	450.33	0.149	1284.21	9.239	10925	0.0	874	14.50	8.28	n.d.	19813	69.69	2636
485	7.72	63.0	2.86	<0,5	<0,05	0.44	-0.02	4.72	0.030	417.42	0.03	451.32	0.147	1291.76	8.408	11136	-0.1	874	14.81	8.30	n.d.	20045	70.1	2851
544	7.77	-12.0	2.83	<0,5	<0,05	0.40	0.09	4.76	0.030	418.33	0.04	448.24	0.149	1281.24	8.212	11107	-0.1	869	14.64	8.34	n.d.	19658	68.6	2813
610	7.60	168.0	2.83	<0,5	<0,05	0.39	0.05	4.78	0.030	422.08	0.00	454.65	0.146	1294.35	8.031	11251	0.0	873	15.23	8.41	n.d.	19828	71.9	2821
659	7.75	77.0	2.88	<0,5	<0,05	0.34	-0.01	4.79	0.028	422.06	0.03	450.67	0.144	1287.40	7.667	11215	0.1	884	15.02	8.39	0.7	20897	72.0	2875
710	7.67	201.0	2.87	<0,5	<0,05	0.32	-0.01	4.89	0.029	422.87	0.00	457.35	0.142	1294.06	7.312	11308	-0.1	871	15.61	8.42	n.d.	20363	71.3	2859
n.d. : n	ot dete	ermined																						

Station											Ge	oB146.	11									_		
Core n	umber										Geol	31461	7-1											
Depth/ cm	μH	Eh	Alk _T [mmol/L	NH4 ⁺	Fe ²⁺	PO 4 ³⁻ [mg/L]	Al Imo/Li	B me/Ll	Ba mø/Ll	Ca [mo/L]	Fe [mø/L]	K mg/L	Li [mø/L]	Mg [mø/L]	Mn [mø/L]	Na [mø/L]	P [mø/L]	S [mø/L]	Si [mø/L]	Sr [mø/L]	F- mø/Ll	CI ⁻	Br' mo/Ll	SO4 ²⁻ mø/L
35	7.65	147.0	3 05	20 5 0>	<0.05	0 37	-0.05	4 80	0.039	407.28	10.0-	1 148 03	0 194	1207 13	4 071	11143	10	877	13 96	7 93	10	9036	589	7757
81	7.68	161.0	3.09	<0.5	<0,05	0.43	0.05	5.02	0.037	400.48	0.02	452.16	0.184	1281.17	5.607	11112	0.1	846	14.48	7.76	1.2	20117	69.5	2769
155	7.75	80.0	3.09	<0,5	<0,05	0.53	-0.05	4.84	0.033	407.95	0.00	451.27	0.168	1287.65	7.338	11168	0.1	858	14.34	7.99	1.3	20183	6.69	2783
255	7.75	150.0	3.11	<0,5	<0,05	0.44	-0.01	4.80	0.031	409.20	0.00	447.58	0.171	1289.03	8.275	11144	0.2	868	14.35	8.02	1.1	20037	69.2	2764
353	7.69	116.7	3.06	<0,5	<0,05	0.38	0.05	4.80	0.034	414.06	0.01	454.63	0.165	1293.85	8.450	11172	-0.1	864	14.92	8.15	1.2	19866	68.3	2739
428	7.76	122.0	3.05	<0,5	<0,05	0.32	0.03	4.74	0.031	416.86	0.01	456.67	0.164	1292.18	8.239	11259	0.0	872	15.17	8.22	1.0	20153	69.1	2774
485	7.62	130.4	3.02	<0,5	<0,05	0.31	0.06	4.80	0.032	415.79	0.09	456.69	0.160	1286.88	8.220	11079	-0.2	864	15.38	8.22	0.9	20065	69.0	2758
523	7.68	40.6	3.03	<0,5	<0,05	0.31	0.05	4.79	0.028	418.75	0.01	456.57	0.157	1290.92	8.088	11289	0.0	875	15.08	8.29	1.2	20392	70.8	2803
587	7.65	191.0	3.01	<0,5	<0,05	0.30	0.06	4.82	0.030	418.37	0.00	456.63	0.158	1285.16	7.899	11194	0.1	866	15.56	8.29	1.2	20020	69.4	2750
621	7.64	133.0	3.04	<0,5	<0,05	0.29	0.04	4.75	0.030	423.06	0.02	455.89	0.156	1290.23	7.701	11121	0.1	871	15.22	8.39	1.0	20062	68.9	2760
688	7.63	139.0	3.04	<0,5	<0,05	0.27	0.01	4.78	0.031	421.00	0.01	458.81	0.153	1285.00	7.601	11203	0.2	863	15.84	8.35	1.1	20196	6.69	2772
747	7.63	127.0	3.00	<0,5	<0,05	0.25	0.12	4.78	0.033	423.07	0.03	455.57	0.165	1285.42	7.493	11197	0.0	872	15.59	8.41	0.8	20172	69.2	2765
819	7.67	123.0	3.03	<0,5	<0,05	0.24	0.07	4.78	0.028	428.76	0.02	458.69	0.150	1290.46	7.148	11189	0.0	871	15.61	8.53	1.0	20191	6.69	2769
882	7.59	168.0	3.03	<0,5	<0,05	0.22	0.09	4.82	0.028	426.37	0.01	458.82	0.147	1275.66	7.041	11242	0.1	860	15.79	8.50	1.0	20298	69.8	2775
n.d. : n	ot dete	ermined																						

<u> </u>	_		-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
		SO4 ²⁻ [mg/L]	2714	2746	2713	2727	2722	2739	2724	2753	2742	2712	2715	2727	2719	2717	2734	2722	2726	2716	2719	2762	2738	2726	2726
		Br' [mg/L]	68.2	68.5	67.6	68.8	68.0	68.7	68.1	68.8	68.7	68.4	68.1	68.7	67.9	68.0	68.3	68.0	68.2	68.5	67.9	69.1	68.8	68.3	68.5
		CI ⁻ mg/L]	19615	19874	20011	19734	19733	19822	19671	19912	19903	19624	19681	19749	19680	19670	19788	19701	19719	19677	19828	19998	19816	19741	19745
		F- mg/L] [1.7	1.6	2.2	1.9	1.9	3.3	2.6	1.1	2.6	2.7	2.4	2.1	1.9	2.2	2.2	2.0	2.1	2.6	3.0	2.4	1.8	2.0	1.8
		Sr mg/L]	7.76	7.76	7.96	7.82	7.69	7.81	7.85	7.98	7.82	7.80	7.78	7.83	7.81	7.78	7.84	7.76	7.88	7.79	7.81	7.83	7.85	7.91	7.83
		Si ng/L] [18.15	18.32	17.84	18.28	17.97	18.00	18.28	16.59	17.58	17.77	17.42	17.35	17.49	17.11	17.58	17.15	16.77	16.64	16.58	16.66	15.83	15.96	15.88
		S ng/L] [1	861	876	879	873	875	868	857	879	873	864	870	857	867	844	862	871	878	876	870	869	875	881	874
		P g/L] [r	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.1	0.0	0.0	0.1	0.1	0.1	0.0	0.0	0.0	0.1	0.1	0.1
		Na g/L] [m	152	015	052	212	119	049	159	109	120	102	157	107	138	145	. 890	140	185	146	113	131	143	236	117
			90 11	71 11	65 11	68 11	54 11	58 11	59 11	47 11	82 11	87 11	70 11	66 11	50 11	33 11	23 11	14 11	11 60	93 11	91 11	78 11	65 11	69 11	87 11
		[mg/	0 0.69	0 0.17	5 0.16	9 0.16	1 0.16	5 0.15	5 0.15	6 0.1	7 0.18	9 0.18	5 0.17	4 0.16	1 0.15	7 0.13	4 0.13	2 0.11	4 0.10	6 0.09	4 0.09	5 0.07	8 0.00	0 0.00	3 0.08
		Mg [mg/L]	1274.0	1280.4	1302.6	1285.3	1278.2	1285.5	1290.2	1306.2	1282.2	1287.0	1288.2	1290.7	1293.0	1286.3	1287.2	1283.2	1298.2	1287.2	1299.3	1296.4	1301.8	1306.5	1300.1
19	9-1	Li [mg/L]	0.161	0.159	0.163	0.165	0.157	0.160	0.155	0.160	0.150	0.158	0.159	0.163	0.172	0.164	0.157	0.156	0.155	0.160	0.165	0.155	0.161	0.166	0.156
oB146	B1461	K [mg/L]	471.81	471.42	461.32	476.20	460.18	469.57	474.17	439.00	467.41	466.81	473.68	462.70	468.93	466.55	477.01	476.30	468.53	472.20	464.26	470.69	457.56	459.69	456.61
Ge	Geo	Fe [mg/L]	0.26	0.19	0.18	0.31	0.07	0.08	0.09	0.09	0.14	0.16	0.11	0.89	0.13	0.68	0.14	0.10	0.11	0.09	0.11	0.09	0.43	0.02	0.05
		Ca [mg/L]	398.88	403.46	409.60	404.36	400.76	402.01	405.43	409.96	403.09	402.09	401.98	404.32	403.12	400.72	403.74	400.56	406.85	399.32	404.22	403.42	406.80	408.73	404.23
		Ba [mg/L]	0.038	0.036	0.037	0.042	0.036	0.037	0.037	0.036	0.033	0.036	0.035	0.034	0.032	0.032	0.035	0.033	0.032	0.033	0.031	0.034	0.035	0.032	0.033
		B [mg/L]	4.85	4.79	4.61	4.79	4.82	4.84	4.79	4.51	4.88	4.90	4.81	4.78	4.79	4.79	4.90	4.78	4.77	4.83	4.81	4.84	4.70	4.77	4.80
		Al [mg/L]	0.03	0.07	0.01	0.05	0.10	0.06	0.11	0.15	0.04	0.14	0.04	0.06	0.18	0.15	0.08	0.11	0.14	0.02	0.12	0.07	0.18	0.06	0.20
		PO4 ³⁻ mg/L]	0.24	0.16	0.20	0.16	0.15	0.15	0.15	0.19	0.14	0.14	0.14	0.12	0.13	0.13	0.12	0.14	0.13	0.15	0.12	0.13	0.11	0.11	0.11
		Fe ²⁺ mg/L]	0.24	0.13	0.16	0.12	<0,05	<0,05	0.07	0.07	0.10	0.10	0.10	0.11	0.11	0.10	0.09	<0,05	0.08	<0,05	0.07	<0,05	<0,05	<0,05	<0,05
		NH4 ⁺ [mg/L]	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5
		Alk _T [mmol/L]	2.90	2.85	2.84	2.80	2.78	2.79	2.81	2.80	2.77	2.77	2.76	2.76	2.74	2.73	2.73	2.73	2.73	2.58	2.71	2.69	2.75	2.70	2.69
		Eh [mV]	-168.0	-88.0	137.0	-270.0	-300.0	-262.0	-199.0	138.6	-283.0	-300.0	-265.0	-262.0	-254.0	-239.0	-219.0	-207.0	-162.0	-110.0	-87.0	-58.0	-72.0	94.0	42.8
	umber:	μd	7.59	7.63	8.09	7.70	7.60	7.69	7.69	7.88	7.75	7.75	7.94	7.75	7.72	7.95	7.81	7.82	7.82	7.88	7.85	7.75	7.86	7.67	7.66
Station	Core nu	Depth/ cm	8	32	38	46	83	118	145	151	166	218	258	294	325	358	394	428	467	531	567	632	657	671	732

-																										_	
		SO4 ²⁻ [mg/L]	2743	2728	2735	2726	2725	2730	2783	2704	2720	2775	2724	2740	2771	2740	2798	2733	2733	2718	2766	2737	2726	2755	2738	2777	
		Br' [mg/L]	65.2	66.7	66.1	63.2	63.4	63.5	66.2	65.4	65.7	65.2	64.9	60.9	64.2	66.2	65.9	65.7	67.5	63.7	66.6	64.6	66.1	66.5	67.3	67.7	
		CI ⁻ mg/L]	19651	19499	19551	19556	19566	19622	20088	19507	19570	19995	19589	19698	19924	19713	20188	19706	19631	19572	19908	19597	19529	19710	19552	19910	
		F ⁻ mg/L]	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	
		Sr mg/L]	7.85	7.88	7.95	7.89	7.94	7.93	7.91	7.87	7.96	7.88	8.07	7.93	7.85	7.82	7.87	7.91	7.87	7.95	7.90	7.90	7.92	7.92	7.90	7.91	
		Si mg/Ll [15.54	16.21	16.83	17.79	17.80	18.22	18.51	18.58	18.17	18.64	17.55	18.02	18.03	17.91	18.13	17.59	18.13	18.56	18.00	18.07	18.30	18.12	18.67	18.71	
		S ng/L] [1	880	878	875	861	851	850	865	861	859	867	863	865	873	857	866	863	872	866	856	879	871	871	859	861	
		P Ig/L] [n	0.2	0.2	0.4	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.2	0.1	0.1	0.2	0.2	0.2	0.1	0.0	0.1	0.0	0.0	0.1	0.0	0.1	
		Na g/L [n	1110	089	1110	033	075	095	135	960	168	157	878	150	104	038	144	660	1111	196	1115	133	188	197	155	157	
		/In g/L] [m	334 1	988 11	614 1	684 11	155 11	821 11	606 11	471 11	290 11	169 11	918 10	734 11	662 11	600 11	583 11	541 11	513 1	499 11	467 1	418 11	326 11	260 11	229 11	164 11	
		lg /L]	7.62 6.	0.60 5.9	0.15 4.0	1.48 3.0	8.84 3.	1.88 2.3	9.37 2.0	7.82 2.4	5.16 2.2	2.20 2.	1.36 1.9	5.98 1.7	5.64 1.0	3.69 1.0	1.08 1.5	5.63 1.5	.92 1.3	3.25 1.4	1.68 1.4	5.40 1.4	9.33 1.2	5.67 1.2	t.74 1.3	3.88 1.	
		L] [mg	2 1287	5 1289	5 1299	1 1291	6 1298	1 1291	0 1289	9 1287	8 1295	6 1292	9 1304	8 1285	4 1285	7 1273	0 1284	6 1285	4 1281	6 1293	6 1291	3 1296	7 1299	7 1305	3 1294	3 1288	
4620	620-1	L Li [mg/]	0 0.17	9 0.17	6 0.17	7 0.17	6 0.16	5 0.17	8 0.17	0.16	9 0.16	9 0.16	0.16	1 0.15	2 0.16	2 0.16	0.17	9 0.16	0 0.16	9 0.16	2 0.15	1 0.16	0.15	0.16	7 0.15	0 0.16	
jeoB1	eoB14	[mg/	457.4	457.2	445.4	447.1	442.3	448.6	451.7	450.6	456.4	458.6	450.0	464.3	460.5	460.1	467.0	462.2	467.0	473.9	465.8	462.8	469.5	461.9	471.5	480.1	
Ŭ	Ğ	Fe [mg/L	0.23	0.24	0.22	0.23	0.20	0.20	0.17	0.17	0.17	0.24	0.25	0.26	0.26	0.25	0.27	0.28	0.29	0.35	0.18	0.18	0.17	0.14	0.13	0.10	
		Ca [mg/L]	403.03	404.77	408.77	405.66	408.97	408.89	407.94	406.75	411.12	407.78	415.29	410.65	407.81	405.12	408.18	409.52	408.32	411.86	409.95	410.14	411.50	412.11	410.44	408.33	
		Ba [mg/L]	0.049	0.046	0.043	0.041	0.038	0.037	0.040	0.037	0.035	0.045	0.039	0.033	0.035	0.034	0.036	0.035	0.034	0.037	0.035	0.032	0.032	0.033	0.031	0.034	
		B [mg/L]	5.03	5.03	4.83	4.85	4.83	4.84	4.92	4.91	4.85	4.93	4.70	5.01	4.96	4.88	5.01	4.96	4.97	5.08	4.97	4.91	4.89	4.83	4.91	4.86	
		Al [mg/L]	0.16	0.17	0.12	0.13	0.17	0.09	0.14	0.11	0.10	0.09	0.11	0.07	0.05	0.05	0.12	0.09	0.25	0.14	0.15	0.11	0.16	0.14	0.03	0.16	
		PO ₄ ³⁻ [mg/L]	0.71	0.76	0.91	0.90	0.94	0.92	0.87	0.84	0.85	0.81	0.85	0.57	0.55	0.49	0.47	0.43	0.42	0.38	0.33	0.29	0.23	0.20	0.18	0.16	
		Fe ²⁺ [mg/L]	0.16	0.08	0.16	0.19	0.16	0.14	0.13	0.13	0.13	0.15	0.19	0.22	0.22	0.22	0.22	0.23	0.23	0.20	0.14	0.14	0.14	0.11	0.09	0.05	
		NH4 ⁺ [mg/L]	<0.5	<0,5	<0,5	0.69	0.81	0.95	1.04	1.09	1.17	1.26	1.27	1.36	1.30	1.29	1.24	1.16	1.11	1.02	0.97	0.86	0.70	0.57	<0,5	<0,5	
		Alk _T mol/L	3.05	3.10	3.25	3.34	3.43	3.50	3.54	3.54	3.56	3.57	3.55	3.41	3.43	3.38	3.38	3.29	3.30	3.24	3.27	3.17	3.15	3.02	3.01	2.88	
		ц Ш Ш	0.71	40.0	17.0	60.0	85.0	98.0	03.0	56.0	15.0	38.0	50.0	71.0	70.0	3.00	41.0	98.0	47.0	64.0	60.0	42.0	15.0	0.06	08.0	15.0	nined
	iber:	 	58 -7	68 -14	65 -1	70 -16	71 -18	77 -19	73 -20	74 -2:	84 -2	77 -2.	74 -2:	68 -2	81 -2	80 98	78 -1-	75 -19	62 -24	69 -24	71 -24	88 -2-	73 -2	66 -19	66 -21	63 -1	determ
tion:	re nun	th/ I	7.1	0 7.4	0 7.4	1 7.	4 7.	.7 01	1 7.	4 7.	.7 - 64	1 7.	4 7.	.7 01	1 7.3	4 7.	.7 01	1 7.	4 7.0).7 Qt	1 7.	4 7.	.7 01	1 7.6	4 7.6).7 QI	. : not
Sta	ပီ	Dep cn	ſ	5	5	∞	Ξ	4	18	21	24	28	31	34	38	41	4	48	51	54	58	61	64	68	71	74	n.d

tation:											Ge	oB1462	21											
Core nu	mber:										Geo	B1462	[-]											
Depth/ cm	Hq	Eh [mV]	Alk _T [mmol/L]	NH4 ⁺ [mg/L]	Fe ²⁺ [mg/L]	PO 4 ³⁻ [mg/L]	Al [mg/L]	B [mg/L]	Ba [mg/L]	Ca [mg/L]	Fe [mg/L]	K [mg/L	Li [mg/L]	Mg [mg/L]	Mn [mg/L]	Na [mg/L]	P [mg/L]	S [mg/L]	Si [mg/L]	Sr [mg/L]	F- [mg/L]	CI ⁻ [mg/L]	Br ⁻ mg/L]	SO4 ²⁻ [mg/L]
20	7.68	-130.5	3.07	n.d.	n.d.	n.d.	0.20	4.93	0.047	407.89	0.28	463.21	0.172	1297.96	6.175	11124	0.2	876	16.11	7.94	1.2	19733	70.8	2764
68	7.97	168.0	3.15	n.d.	n.d.	n.d.	0.15	4.62	0.041	414.78	0.34	440.70	0.177	1320.41	5.801	11168	0.3	876	15.48	8.11	0.8	19760	6.69	2773
114	7.71	-154.0	3.09	n.d.	n.d.	n.d.	0.10	5.01	0.036	408.50	0.39	468.50	0.171	1292.65	5.375	11195	0.2	866	16.59	7.97	1.4	19740	71.1	2748
164	7.66	-192.0	3.18	n.d.	n.d.	n.d.	0.14	4.94	0.034	410.90	0.37	471.52	0.179	1297.45	5.008	11177	0.2	867	17.03	8.06	1.0	19770	71.1	2760
214	. 69.7	-212.0	3.20	n.d.	n.d.	n.d.	0.21	4.82	0.035	409.47	0.38	463.66	0.173	1295.40	4.775	11093	0.2	859	16.85	8.02	1.29	19897	71.1	2774
264	. 09.7	-210.0	3.19	n.d.	n.d.	n.d.	0.21	4.82	0.033	414.39	0.38	459.39	0.160	1310.12	4.819	11177	0.2	873	16.77	8.16	0.9	19954	71.8	2779
314	7.65	-236.0	3.23	n.d.	n.d.	n.d.	0.11	4.81	0.032	413.61	0.41	463.44	0.165	1301.92	4.898	11144	0.2	866	17.20	8.16	1.4	19842	70.7	2766
364	7.59	-242.0	3.26	n.d.	n.d.	n.d.	0.07	4.95	0.031	410.53	0.52	466.41	0.170	1293.83	5.125	11155	0.2	865	17.88	8.13	2.3	19983	71.0	2787
414	7.65	-272.0	3.31	n.d.	n.d.	n.d.	0.17	4.85	0.033	415.17	0.40	463.96	0.167	1301.35	5.168	11216	0.3	872	17.38	8.23	0.8	20215	72.5	2808
464	7.65	-138.0	3.25	n.d.	n.d.	n.d.	0.17	4.94	0.032	412.76	0.38	473.49	0.167	1290.91	5.330	11214	0.1	864	17.72	8.25	2.8	20018	71.7	2777
514	7.67	-266.0	3.35	n.d.	n.d.	n.d.	0.10	4.89	0.030	416.50	0.41	469.11	0.165	1307.87	5.490	11275	0.2	879	17.97	8.31	0.8	20229	72.9	2807
564	7.62	-268.0	3.29	n.d.	n.d.	n.d.	0.17	5.00	0.029	415.92	0.40	471.63	0.171	1293.37	5.709	11256	0.1	872	18.23	8.33	3.1	20132	72.1	2793
614	7.70	-266.0	3.32	n.d.	n.d.	n.d.	0.19	4.90	0.029	418.33	0.38	470.85	0.159	1297.62	5.688	11216	0.1	868	17.93	8.41	1.7	20125	71.8	2788
664	. 69.7	-199.0	3.35	n.d.	n.d.	n.d.	0.13	4.87	0.031	419.25	0.40	462.03	0.156	1301.29	5.781	11286	0.2	860	17.85	8.47	0.7	20181	72.1	2793
714 3	7.68	-210.0	3.31	n.d.	n.d.	n.d.	0.20	4.94	0.030	417.58	0.40	463.78	0.156	1299.50	5.916	11259	0.1	863	18.00	8.45	1.2	20227	72.1	2797
764	7.80	-185.0	3.37	n.d.	n.d.	n.d.	0.17	4.88	0.033	419.63	0.34	471.08	0.168	1304.43	5.824	11285	0.1	863	18.02	8.52	1.1	20343	73.1	2809
814	. 99.7	-162.0	3.38	n.d.	n.d.	n.d.	0.08	4.91	0.031	419.67	0.42	466.77	0.158	1296.66	5.920	11160	0.1	874	18.07	8.56	0.9	20284	72.4	2798
864	7.63	-228.0	3.35	n.d.	n.d.	n.d.	0.15	4.91	0.029	421.20	0.38	476.45	0.153	1288.89	5.919	11231	0.1	858	17.94	8.63	1.6	20253	72.6	2790
n.d. : not	t deter	mined																						

Statio	:u										Gec	5B1462	22											
Core 1	Inmbe	ü									Geol	B14622	2-1											
Depth/ cm	Hq	Eh [mV]	Alk _T [mmol/L]	NH4 ⁺ [mg/L]	Fe ²⁺ [mg/L]	PO4 ³⁻ [mg/L] l	Al [mg/L]	B [mg/L]	Ba [mg/L]	Ca [mg/L]	Fe [mg/L]	K [mg/L	Li [mg/L]	Mg [mg/L]	Mn [mg/L]	Na [mg/L]	P [mg/L]	S [mg/L]	Si [mg/L]	Sr mg/L]	F- mg/L]	CI ⁻ [mg/L]	Br mg/L]	SO4 ²⁻ mg/L]
16	7.54	-39.0	2.65	n.d.	n.d.	n.d.	0.11	4.94	0.045	405.67	0.08	463.50	0.177	1295.01	4.376	11208	0.1	873	14.30	7.89	1.3	20358	72.8	2847
29	7.55	105.0	2.67	n.d.	n.d.	n.d.	0.16	4.88	0.040	406.63	0.04	464.72	0.181	1297.54	690.9	11288	0.1	871	15.49	7.91	1.4	20357	72.9	2847
64	7.65	-111.7	2.65	n.d.	n.d.	n.d.	0.12	4.80	0.031	407.59	0.13	460.85	0.180	1296.68	5.640	11181	0.2	875	15.32	7.93	3.0	20613	73.2	2876
114	7.63	-159.0	2.90	n.d.	n.d.	n.d.	0.10	4.87	0.029	406.21	0.37	466.05	0.181	1291.42	5.085	11298	0.2	861	16.02	7.98	1.3	20472	73.5	2857
164	7.62	-175.0	2.94	n.d.	n.d.	n.d.	0.11	4.89	0.032	407.84	0.25	465.86	0.177	1294.35	4.873	11246	0.1	870	16.44	8.02	1.01	20639	73.8	2884
214	7.62	-147.0	3.00	n.d.	n.d.	n.d.	0.11	4.96	0.032	414.00	0.36	471.92	0.174	1302.85	4.359	11376	0.1	877	17.27	8.21	0.9	20367	72.5	2844
264	7.75	-91.0	2.87	n.d.	n.d.	n.d.	0.14	0.03	0.005	0.33	0.04	-0.35	-0.007	0.97	0.012	-110	0.0	0	-0.03	0.01	1.5	20487	72.9	2854
314	7.75	-165.0	3.02	n.d.	n.d.	n.d.	0.15	4.98	0.030	414.75	0.37	478.28	0.166	1302.13	4.077	11302	0.0	873	17.45	8.32	2.3	20699	74.7	2881
364	7.62	-91.0	3.03	n.d.	n.d.	n.d.	0.10	4.85	0.029	418.72	0.33	471.41	0.169	1304.72	4.009	11295	0.1	870	16.74	8.43	1.5	19759	68.1	2712
414	7.62	-216.0	3.07	n.d.	n.d.	n.d.	0.12	4.93	0.032	417.13	0.32	476.26	0.164	1297.21	4.074	11343	0.1	881	17.04	8.43	1.3	19987	68.6	2740
464	7.62	-221.0	3.13	n.d.	n.d.	n.d.	0.13	4.96	0.029	419.06	0.32	474.57	0.155	1295.62	4.142	11383	0.1	873	17.02	8.52	1.5	19936	69.1	2730
514	7.74	-186.0	3.15	n.d.	n.d.	n.d.	0.22	4.98	0.031	420.39	0.42	468.81	0.159	1299.10	4.301	11273	0.1	889	17.05	8.58	1.9	19736	67.2	2709
564	7.67	-213.0	3.12	n.d.	n.d.	n.d.	0.17	5.00	0.032	422.06	0.45	474.98	0.161	1300.75	4.332	11293	0.0	877	17.32	8.65	1.5	19893	68.5	2726
614	7.69	-221.0	3.18	n.d.	n.d.	n.d.	0.12	4.94	0.030	424.98	0.43	475.38	0.163	1299.58	4.369	11317	0.1	873	17.29	8.74	1.6	19904	68.2	2727
664	7.70	-198.0	3.18	n.d.	n.d.	n.d.	0.14	4.93	0.030	421.74	0.39	468.42	0.148	1298.41	4.342	11273	0.1	871	17.05	8.70	1.3	19863	68.5	2721
714	7.95	-176.0	3.28	n.d.	n.d.	n.d.	0.21	4.73	0.031	424.01	0.30	491.70	0.155	1291.13	4.085	11346	0.1	873	16.61	8.78	3.0	19933	69.69	2724
764	7.84	-135.0	3.08	n.d.	n.d.	n.d.	0.13	4.83	0.032	421.00	0.23	483.78	0.156	1300.34	3.961	11341	0.1	871	16.67	8.78	1.6	19866	68.1	2713
814	7.87	-78.8	3.19	n.d.	n.d.	n.d.	0.10	4.95	0.034	423.51	0.34	484.07	0.156	1293.29	4.323	11318	0.1	880	18.04	8.83	1.7	19982	68.6	2725
817	8.02	233.0	3.26	n.d.	n.d.	n.d.	0.16	4.74	0.047	434.92	0.21	461.00	0.154	1321.71	4.223	11391	0.1	876	16.74	9.11	2.4	19915	68.1	2737
n.d. : I	not det	ermined	-																					

		04 ²⁻ g/L]	579	586	595	598	588	594	586	591	723	702	705	598	726	714	700	
		L] [mg	2 26	1 26	1 26	4 26	2 26	3 26	9 26	5 26	5 27	5 27	9 27	1 26	3 27	2 27	0 27	
		Br [mg/]	67.2	67.1	67.1	67.4	67.2	67.3	66.9	67.5	68.5	67.5	67.9	68.	68.3	67.2	68.(
		CI ⁻ [mg/L]	19435	19510	19566	19575	19529	19583	19537	19592	19804	19692	19744	19674	19811	19680	19699	
		F ⁻ [mg/L]	1.7	3.0	2.0	1.6	3.91	1.4	1.1	1.1	1.2	1.3	1.3	0.9	1.3	1.0	1.5	
		Sr [mg/L]	7.90	7.92	7.98	8.02	8.13	8.17	8.11	8.16	8.12	8.20	7.92	8.09	8.14	8.26	8.19	
		Si [mg/L]	16.06	16.39	17.62	16.84	17.78	17.75	17.33	17.52	17.66	18.08	16.93	17.70	17.88	17.25	18.74	
		S [mg/L]	873	865	875	869	888	888	884	888	876	879	845	880	886	899	887	
		P mg/L]	0.2	0.1	0.0	0.2	0.1	0.2	0.1	0.1	0.1	0.0	0.0	0.2	0.1	0.0	0.1	
		Na mg/L]	11152	11111	11248	11243	11351	11336	11332	11358	11268	11407	11008	11348	11304	11384	11407	
		Mn mg/L]	6.737	4.577	3.280	3.856	2.972	2.788	2.626	2.576	2.529	2.515	2.281	2.320	2.341	2.217	2.262	
		Mg mg/L]	296.91	293.58	294.19	306.54	306.04	313.19	306.49	309.89	302.92	311.61	266.01	299.78	309.33	324.86	306.84	
3	-1	Li mg/L]	0.176 1	0.177 1	0.169 1	0.170 1	0.172 1	0.160 1	0.155 1	0.151 1	0.155 1	0.160 1	0.150 1	0.150 1	0.152 1	0.147 1	0.151 1	
oB1462	B14623	K [mg/L]	461.62	462.21	472.95	466.70	473.73	475.91	467.89	474.26	471.43	480.81	463.77	478.29	472.65	472.70	492.67	
Ge	Geo]	Fe [mg/L]	0.09	0.22	0.46	0.31	0.38	0.37	0.39	0.38	0.40	0.37	0.30	0.28	0.37	0.11	0.35	
		Ca mg/L]	407.93	409.06	412.78	414.98	419.28	422.11	419.86	422.62	419.19	424.12	409.94	417.82	422.65	427.02	423.89	
		Ba mg/L]	0.046	0.034	0.030	0.031	0.032	0.031	0.031	0.031	0.032	0.031	0.028	0.030	0.030	0.036	0.030	
		B mg/L]	4.96	4.91	4.95	4.95	5.04	5.00	4.95	5.00	5.00	5.10	4.77	4.98	4.96	4.80	5.15	
		Al mg/L]	0.11	0.15	0.11	0.18	0.12	0.16	0.18	0.10	0.16	0.19	0.11	0.12	0.10	0.12	0.11	
		PO 4 ³⁻ mg/L]	n.d.															
		Fe ²⁺ [mg/L]	n.d.															
		NH4 ⁺ mg/L] [j	n.d.															
		Alk _T [mmol/L]	3.03	3.04	3.07	3.06	3.13	3.11	3.13	3.12	3.08	3.13	3.00	3.09	3.09	3.19	3.05	
		Eh [mV]	-85.9	-156.0	-204.4	-174.0	-214.0	-185.0	-194.0	-207.0	-190.0	-205.0	-215.0	-165.0	-152.0	n.d.	-136.0	rmined
	umber	Ηd	7.59	7.62	7.66	7.64	7.65	7.63	7.69	7.71	7.69	7.67	7.80	7.91	7.70	n.d.	7.73	ot dete
Station	Core n	Depth/ cm	4	77	127	177	227	277	327	377	427	477	527	577	627	640	677	n.d. : n

	_	. –		_	_	_	_	_	_	_	_			_	_	_	_		_		_	_	_		-
		SO4 ²⁻ [mg/L]	2686	2703	2696	2712	2720	2732	2745	2734	2732	2704	2742	2729	2707	2735	2735	2710	2717	2711	2719	2737	2724	2726	
		Br ⁻ [mg/L]	68.5	68.3	70.9	69.1	68.9	69.0	69.2	68.6	68.2	67.6	70.2	68.1	6.69	68.2	68.3	66.7	68.6	67.8	68.6	68.6	68.7	69.0	
		CI ⁻ mg/L]	19517	19598	19553	19673	19721	19857	19883	19811	19805	19615	19895	19775	19654	20025	19832	19701	19698	19673	19757	19847	19821	19793	
		F- mg/L] [1.8	1.7	=	1.3	1.8	2.5	1.7	1.6	1.7	1.0	1.7	1.3	0.9	0.9	1.3	0.8	1.0	1.1	0.9	1.0	0.8	1.2	
		Sr ng/L] [7.81	7.84	7.82	7.86	7.85	7.85	7.90	7.89	7.87	7.90	7.93	7.93	7.89	7.95	7.88	7.94	7.84	7.94	7.90	7.96	7.87	7.82	
		Si ng/L] [1	8.00	7.63	8.49	8.60	7.75	7.96	7.14	7.02	7.59	7.14	7.14	6.58	6.40	6.60	6.44	6.08	6.35	6.78	6.77	6.30	6.23	5.52	
		S lg/L] [r	863 1	875 1	871 1	884 1	870 1	884 1	888	869 1	874 1	888 1	873 1	868 1	887 1	888 1	880 1	876 1	874 1	879 1	876 1	878 1	866 1	876 1	
		P g/L] [n	0.1	0.0	0.0	0.1	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.1	0.0	0.0	0.0	0.1	0.0	0.0	0.1	
		Na g/L] [m	262 (132	189	180	222	229 0	236 (271 0	183	257 0	266 (308 (329 (339 (278 0	292	195 (289 0	197	234 (333 (151 -	
		и ДГ] [ш]	39 11	40 11	11	43 11	30 11	20 11	02 11	89 11	97 11	89 11	89 11	78 11	82 11	88 11	83 11	86 11	27 11	31 11	72 11	44 11	24 11	94 11	
		M gm	6 0.7	18 0.5	0 0.5	57 0.5	0.5	37 0.5	9 0.5	8 0.4	0.4	7 0.4	0 0.4	8 0.4	5 0.4	0.4	16 0.4	0.4	0.5	5 0.6	9 0.6	3 0.6	2 0.6	8 0.5	
		Mg [mg/L	1287.9	1292.4	1295.0	1291.6	1302.0	1299.8	1307.0	1306.4	1304.9	1308.7	1318.0	1317.5	1307.6	1317.9	1303.4	1314.3	1301.6	1309.8	1314.1	1317.1	1311.6	1297.3	
524	24-1	Li [mg/L]	0.163	0.175	0.166	0.164	0.161	0.165	0.159	0.162	0.167	0.164	0.165	0.162	0.167	0.166	0.165	0.168	0.164	0.159	0.171	0.163	0.172	0.159	
oB146	B1462	K [mg/L]	469.30	462.77	477.19	478.16	466.63	473.51	464.24	465.17	471.09	470.64	472.24	465.81	463.86	469.89	469.61	465.68	458.88	462.63	460.69	461.05	462.08	457.78	
Ge	Gec	Fe [mg/L]	0.20	0.16	0.17	0.16	0.17	0.16	0.14	0.12	0.13	0.12	0.16	0.11	0.13	0.22	0.09	0.10	0.09	0.12	0.13	0.11	0.16	0.11	
		Ca [mg/L]	405.08	406.61	406.27	407.53	407.85	407.57	410.02	409.46	408.73	411.34	410.09	412.80	410.18	412.64	410.46	413.31	406.44	412.73	410.44	413.93	409.34	407.82	
		Ba [mg/L]	0.033	0.033	0.035	0.034	0.033	0.033	0.034	0.031	0.032	0.032	0.035	0.030	0.032	0.033	0.031	0.034	0.030	0.032	0.032	0.031	0.032	0.034	
		B mg/L]	4.89	4.74	4.87	4.99	4.92	4.99	4.84	4.84	4.90	4.84	5.00	4.81	4.85	4.92	4.88	4.88	4.86	4.83	4.86	4.80	4.87	4.81	
		Al mg/L]	0.10	0.20	0.13	0.17	0.09	0.17	0.23	0.09	0.11	0.12	0.12	0.14	0.14	0.13	0.07	0.14	0.14	0.10	0.13	0.11	0.17	0.06	
		PO4 ³⁻ mg/L]]	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.													
		Fe ²⁺] ng/L]	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.													
		NH4 ⁺	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.													
			-90	.83	.85	.85	.83	.81	.78	.78	77.	.78	.69	.82	<i>LL</i> :	.73	.81	.79	.73	.80	.74	.75	.71	.75	
		V III	0 2	0	0 2	0	0	0	0	0 2	0	0 2	0 2	0 2	0	4	0 2	0	0 2	0 2	0 2	0 2	0	0 2	ed
	er:	Eh	-105.	-185.	-180.	-205.	-220.	-140.	-265.	-315.	-300.	-333.	-330.	-335.	-339.	####	-313.	-274.	-292.	-303.	-273.	-232.	-235.	-220.	termin
:u	numb	Hq	7.67	7.74	7.75	7.69	7.68	7.72	7.95	7.74	7.73	7.76	7.69	7.85	7.77	7.71	7.74	7.75	7.75	7.74	7.84	7.84	7.87	7.84	not de
Statio	Core	Depth/ cm	44	84	117	144	194	244	294	344	394	444	494	544	594	644	694	744	794	844	894	944	994	1044	n.d. :

								Ħ	Gec	oB1462	25											
									Geol	B14625	5-1											
	n Alk _T 7] [mmol/. 1	L NH4 ⁺ [mg/L]	Fe ²⁺ [mg/L]	PO4 ³⁻ [mg/L]]	Al [mg/L]	B [mg/L]	Ba [mg/L]	Ca [mg/L]	Fe [mg/L]	K [mg/L	Li [mg/L]	Mg [mg/L]	Mn [mg/L]	Na [mg/L]	P [mg/L]	S [mg/L]	Si mg/L] [Sr mg/L] [1	F- mg/L] [CI ⁻ [mg/L]	Br' mg/L]	SO4 ²⁻ [mg/L]
173	3.04	n.d.	n.d.	n.d.	0.14	5.01	0.045	415.64	0.37	475.42	0.170	1295.45	3.735	11302	0.3	879	17.81	8.02	1.9	19773	69.2	2739
-165	5.0 3.14	n.d.	n.d.	n.d.	0.12	5.06	0.068	419.02	0.45	489.94	0.165	1301.18	2.831	11310	0.1	869	18.99	8.06	1.4	20002	69.8	2769
152.	.0 3.16	n.d.	n.d.	n.d.	0.25	4.66	0.063	431.20	0.54 4	445.05	0.162	1327.49	2.137	11340	0.1	885	17.33	8.31	0.8	19969	6.69	2776
-313	0.0 3.20	n.d.	n.d.	n.d.	0.11	5.05	0.036	427.12	0.34 4	490.23	0.155	1307.22	1.457	11313	0.1	878	19.46	8.17	0.8	20066	70.1	2776
-305	5.0 3.17	n.d.	n.d.	n.d.	0.08	4.89	0.036	405.16	0.30	466.71	0.145	1240.82	1.372	10793	0.1	852	18.83	7.75	1.3	19891	68.7	2749
-278	3.20	n.d.	n.d.	n.d.	0.17	4.95	0.032	429.54	0.32 4	488.18	0.157	1312.69	1.384	11421	0.0	881	19.48	8.20	1.2	19923	69.2	2754
-290	0.0 3.16	n.d.	n.d.	n.d.	0.05	5.10	0.034	424.41	0.31 4	492.57	0.154	1298.69	1.380	11315	0.0	875	19.88	8.13	0.6	19991	69.7	2763
-270	0.0 3.18	n.d.	n.d.	n.d.	0.20	5.07	0.035	427.35	0.22 4	491.27	0.152	1313.01	1.327	11425	0.0	894	19.26	8.16	0.7	20048	69.69	2769
-298	3.06	n.d.	n.d.	n.d.	0.08	5.07	0.035	424.81	0.28 4	496.14	0.161	1309.09	1.332	11430	0.1	894	19.94	8.14	0.6	20154	70.2	2787
-310	0.0 3.15	n.d.	n.d.	n.d.	0.12	5.03	0.033	428.76	0.29	486.17	0.153	1311.73	1.325	11368	0.2	896	19.19	8.20	0.6	20021	69.8	2762
-310	0.0 3.14	n.d.	n.d.	n.d.	0.20	5.01	0.033	426.31	0.30	485.27	0.159	1302.75	1.332	11373	0.0	883	19.40	8.14	0.7	19973	68.9	2757
-324	9.15	n.d.	n.d.	n.d.	0.15	5.10	0.032	428.55	0.30	489.64	0.152	1315.17	1.306	11373	0.1	882	19.64	8.17	0.6	19820	69.1	2731
-239	0.0 3.10	n.d.	n.d.	n.d.	0.13	5.00	0.033	426.35	0.30	480.92	0.147	1300.76	1.266	11396	0.2	884	19.09	8.15	0.6	19928	69.7	2746
###	# 3.05	n.d.	n.d.	n.d.	0.17	5.05	0.032	424.54	0.28 4	480.27	0.153	1306.44	1.264	11361	-0.1	887	19.24	8.15	0.8	19904	68.8	2742
-221	.0 3.08	n.d.	n.d.	n.d.	0.11	4.94	0.032	423.00	0.28 4	477.58	0.146	1301.52	1.228	11325	0.0	878	18.97	8.09	0.7	19852	69.1	2731
-188	3.10	n.d.	n.d.	n.d.	0.12	4.92	0.036	428.60	0.25	484.70	0.151	1315.90	1.223	11390	0.0	886	19.01	8.19	2.2	20051	70.1	2760
-75.	.4 3.04	n.d.	n.d.	n.d.	0.12	5.01	0.033	423.58	0.31	483.76	0.152	1306.26	1.224	11463	0.0	887	19.18	8.11	0.9	19920	69.5	2741
ermir	hed																					

Berichtsblatt

1. ISBN oder ISSN ISSN 0931-0800 (Fahrtbericht)	2. Berichtsart (Schlussbericht oder Veröffer Schlussbericht	ntlichung)
3. Titel SO 207 – SEAMOUNTFLUX: Effiziente Abkühlung junger ozeanischer Kruste durch Zirkulation von Meerwasser durch Seamounts (Guatemala Becken, Ostpazifik)		
4. Autor(en) [Name(n), Vorname(n)] Prof. Dr. Heinrich Villinger Prof. Dr. Thomas Pichler		5. Abschlussdatum des Vorhabens 30.04.2012 6. Veröffentlichungsdatum geplant 7. Form der Publikation Fachzeitschrift
8. Durchführende Institution(en) (Name, Ac Universität Bremen Fachbereich 05 – Geowissenschaften Klagenfurter Straße 28359 Bremen	Iresse)	 9. Ber. Nr. Durchführende Institution 10. Förderkennzeichen 03G0207A 11. Seitenzahl 45 (ohne Anhang)
 12. Fördernde Institution (Name, Adresse) Bundesministerium für Bildung und Forschung (BMBF) 53170 Bonn 16. Zusätzliche Angaben 		13. Literaturangaben 8 14. Tabellen 2 15. Abbildungen 34
 17. Vorgelegt bei (Titel, Ort, Datum) 18. Kurzfassung Im äquatorialen Pazifik werden von verschi Entstehung bislang unklar war. Eine Hypot Untergrund eindringt, dort erwärmt wird und durch sollen die Depressionen in der sedin prüfung dieser Hypothese durch Untersuch stromdichtemessungen in Pits und an Sear stand des Forschungsvorhabens. Die Ergebnisse lassen sich wie folgt kurz z Die seismischen Untersuchungen zeige dieser Lücke nicht möglich. Der Wärmestrom innerhalb der Pits ist im Umfeld von Seamounts ist extrem n räume in die obere Kruste versickert. Keine der sedimentologischen Untersu der Karbonate. Porenwasserprofile get Aufgrund dieser Ergebnisse kann man die sind, als die Untersuchungsgebiete im Ber dern in Richtung Norden setzte pelagische 19. Schlagwörter	edenen Autoren Depressionen in der sedime hese zur Genese geht davon aus, dass kalte d an den Depressionen wieder ausfließt und hentären Bedeckung, auch ,hydrothermal pits nungen der sedimentären Struktur innerhalb i mounts und durch die Untersuchung der Sed usammenfassen: en, dass innerhalb der Pits Sedimentpakete f überall höher als außerhalb der Pits, teilweis iedrig, ein eindeutiger Hinweis darauf, dass k chungen an Proben von Schwerelotkernen g ben keinen Hinweis auf rezente advektive Flu Pits als fossile Folge von Lösungsprozessen eich der äquatorialen Hochproduktionszone v Sedimentation ein, die den Lösungsprozess	entären Bedeckung beschreiben, deren es Meerwasser über Seamounts in den dabei karbonathaltiges Sediment löst. Da- s' genannt, entstanden sein. Die Über- und außerhalb der Pits, durch Wärme- limente und ihrer Porenwässer war Gegen- fehlen, doch ist die zeitliche Einordnung se bis um den Faktor 5. Der Wärmestrom kaltes Meerwasser über geologische Zeit- geben Hinweise auf Lösungserscheinungen uidtransporte. betrachten, die zu einer Zeit entstanden von Karbonaten lagen. Beim Herauswan- stoppte.
Marine Geophysik, Seismik, Wärmestrom, 20. Verlag	n, hydrothermale Zirkulation, Ozeankruste, Porenwassergeochemie 21. Preis	

Document Control Sheet

1. ISBN or ISSN ISSN 0931-0800 (cruise report)	2. type of document (e.g. report, publication Final Report	n)	
3. title SO 207 – SEAMOUNTFLUX: Efficient cooling of young ocean crust by circulation of cold seawater through seamounts (Guatemala Basin, eastern Pacific)			
4. author(s) (family name, first name(s)) Prof. Dr. Heinrich Villinger Prof. Dr. Thomas Pichler		 5. end of project 30.04.2012 6. publication date planned 7. form of publication Scientific journal 	
8. performing organization(s) (name, addre Universität Bremen Fachbereich 05 – Geowissenschaften Klagenfurter Straße 28359 Bremen	iss)	 9. originator's report no. 10. reference no. 03G0207A 11. no. of pages 45 (without appendix) 	
12. sponsoring agency (name, address) Bundesministerium für Bildung und Forschung (BMBF) 53170 Bonn		13. no. of references814. no. of tables215. no. of figures34	
 17. presented at (title, place, date) 18. abstract Different authors described depressions in 	the sedimentary cover in the equatorial Paci	fic, whose formation has been unknown	
 up to now. One hypothesis of the origination assumes, that cold seawater is penetrating the subsurface through seamounts, is heated up there and flows out of the seafloor at these depressions, hereby solving carbonate contained in the sediment. That would have created the depressions, also called 'hydrothermal pits'. This hypothesis can be tested by investigating the sedimentary structure inside and outside of the pits, by measuring heat flow inside and outside of pits and at seamounts and by analyzing sediments and pore water geochemistry. The results can be summarized as follows: Seismic investigations show that sediment packages inside the pits are missing; however it is not possible to time this hiatus. Heat flow inside the pits is always higher compared to background values outside of the pits, sometimes by a factor of five. Heat flow in the vicinity of seamounts is extremely low, a strong indication that cold seawater flows through the seamount into the subsurface over geological time scales. None of the investigations on the sediments showed any indication of dissolution processes of carbonates. Profiles of pore water geochemistry show no indication of advective fluid transport. Based on these results we can conclude that the Pits are fossile relicts of dissolution processes, which were active at a time, when the working areas were situated close to the equatorial high productivity zone of carbonates. When they moved further north they left the high productivity zone and normal pelagic sedimentation took over which stopped the dissolution processes. 			
20. publisher	ne geophysics, seismics, heat flow, hydrothermal circulation, ocean crust, pore water geochemistry ublisher 21. price		