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Abstract: Unique three-dimensional (3D) titanium dioxide (TiO2) nanoflowers (TFNA) have shown
great potential for humidity sensing applications, due to their large surface area-to-volume ratio
and high hydrophilicity. The formation of a composite with other materials could further enhance
the performance of this material. In this work, the effect of different types of composites on the
performance of a TNFA-based humidity sensor was examined. NiO, ZnO, rGO, and PVDF have been
explored as possible composite pairing candidates with TiO2 nanoflowers, which were prepared
via a modified solution immersion method. The properties of the composites were examined using
field emission electron spectroscopy (FESEM), X-ray diffractometry (XRD), transmission electron
microscopy (TEM), X-ray photoelectron spectroscopy (XPS), current-voltage (I-V) analysis, Hall effect
measurement, and contact angle measurement. The performance of the humidity sensor was assessed
using a humidity sensor measurement system inside a humidity-controlled chamber. Based on the
result, the combination of TiO2 with rGO produced the highest sensor response at 39,590%. The
achievement is attributed to the increase in the electrical conductivity, hydrophilicity, and specific
surface area of the composite.

Keywords: TiO2 nanoflower; solution immersion method; composite; humidity sensor

1. Introduction

Nanostructured metal oxides are fast becoming one of the most important materials for
sensing applications. In particular, for chemical sensing whereby the sensing mechanism
often depends on the adsorption and desorption process, the large surface area of these
materials is advantageous to ensure a sensitive and accurate measurement. A humidity
sensor is one type of chemical sensor that fits into this category. The detection mechanism of
a resistive-type humidity sensor is through changes in the electrical resistance when water
molecules are attached to or detached from the surface of the sensing material. Titanium
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dioxide (TiO2) stands out as one of the preferred materials for humidity detection. With its
high hydrophilicity [1], chemical stability, and low cost, this compound has emerged as a
perfect building block for a humidity sensor. The presence of Ti3+ defect sites is also known
to promote the efficient adsorption of water molecules [2,3]. In addition, TiO2 can also
be made into myriad types of nanostructures with a large surface area, such as nanorods,
nanotubes, nanoballs, and nanoflowers [4–7].

A material with a nano-sized structural morphology has shown remarkable perfor-
mance when employed in humidity sensor applications. Jyothilal et al. [8] reported on the
performance of a humidity sensor prepared using slanted TiO2 nanorods. The improved
sensitivity is attributed to the increased surface area for water vapour interaction and con-
densation. Li et al. also produced an ultrasensitive humidity sensor using TiO2 nanowires
that are connected to Ti3C2, utilizing the cross-linked structure to improve the conductiv-
ity [9]. Ultrafine TiO2 nanoparticles (4 to 15 nm) synthesized using the aero-gel method
resulted in an excellent sensing performance due to its porous nature and large interlayer
distance [10]. Meanwhile, Wang et al. [11] reported that an urchin-like CuO nanostructure
produced a remarkable humidity sensing response due to the capillary condensation pro-
cess, facilitated by the gap existing between the spine structures. Similar results have also
been reported for devices prepared using hollow balls [12], nanosheets [13], nanofibers [14],
nanoflakes [15], nanotubes [16], and other structures.

The performance of a humidity sensor could also be improved by mixing TiO2 with
other materials to produce composites. Si et al. [17] added NaNbO3 to TiO2 and re-
ported an increase in the humidity sensing performance in terms of sensitivity, rapid
response/recovery time, and negligible hysteresis. They argued that the formation of a
heterojunction in the TiO2/NaNbO3 composite helps induce this superior performance.
Similarly, Park et al. [18] reported that this heterojunction could improve the sensing ability
of the sensor by decreasing the electron current route. The potential barrier increases at
the humidity condition, because water vapour adsorbed on the TiO2/rGO behaves as an
electron acceptor. The addition of a polymer is also an interesting strategy, as it is said to
have a higher polarization ability due to the contrasting chemical and physical structure.
Sasikumar et al. [19] reported that a PANI/TiO2 composite-based humidity sensor exhib-
ited a higher sensitivity with a faster response/recovery time. Another possible advantage
of a composite is the increase in the overall surface area of the composite by manipulating
the nanostructured nature of the pairing material. Araujo et al. [20] utilized ZnO nanorods
with a large surface area to deliver a higher sensitivity humidity sensor. Meanwhile, a
number of researchers [21] also explored the benefit of having increased Ti3+ or oxygen
vacancy defects induced by the formation of the composite on the performance of the
humidity sensor. They reported on the enhanced hydrophilicity of the sensing material
due to the strong electrostatic field around the defect sites.

Previously, our group managed to produce novel TiO2 flower-like nanorod arrays
(TFNA) on glass substrates using a facile solution immersion method [22]. Our method is
unique because it does not require the use of an autoclave. Instead, we utilize a Schott bottle
and a home-made clamp to produce TFNA with a high surface area. In an effort to further
improve the sensitivity value of the humidity sensor, in this work, we experimented with
TiO2/NiO, TiO2/rGO, TiO2/ZnO, and TiO2/PVDF composites with different structures,
as illustrated in Figure 1. Herein, the comparison between these composites is presented
and discussed. Literature concerning the incorporation of different materials into the
TiO2 nanoflower structure for resistive-type humidity sensor applications is still relatively
scarce. This work will explore the possibility of these composites in terms of their humidity
detection capability.
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Figure 1. Illustration of the different composites structure proposed in this work.

2. Materials and Methods

The procedure started with the preparation of a seed layer by depositing a thin layer
of TiO2 on a soda-lime glass substrate via radio frequency (RF) sputtering (SNTEK). Pure
TiO2 (99.99% purity) was utilized as the target at an RF power of 200 W with 20 and 5 sccm
flowrate of argon and oxygen gas, respectively. An adjustable throttle valve automatically
controlled the chamber pressure so that it was maintained at 5 mTorr throughout the
deposition process. The deposition duration of 6 h yielded an approximately 370 nm
thick TiO2 film. For the preparation of the growth solution, hydrochloric acid (HCl) and
ultra-pure water were combined in a Schott bottle at the ratio of 1:1 and stirred for 10 min.
Next, 0.07 M of titanium butoxide (97% purity, Sigma-Aldrich, St. Louis, MO, USA) was
added to the mixture and stirred for an additional 50 min. A previously prepared TiO2
seed-layer-coated glass substrate was carefully positioned inside the Schott bottle with the
seed layer facing in the upside direction. The bottle was tightly sealed with a heat-resistance
cap and an improvised clamp before being placed inside the oven for 4 h at a temperature
of 150 ◦C. Following the immersion process, the samples were washed with ultra-pure
water and calcined at 500 ◦C for 1 h. This formed the base TFNA thin films.

The TiO2/NiO composite was produced by adding a NiO layer on TFNA using a
method similar to that described by Parimon et al. [23]. A glass substrate with a TFNA layer
was prepared and inserted inside a Schott bottle containing 0.2 M nickel (II) nitrate hexahy-
drate (Ni(NO3)2·6H2O; 97% purity; Friendemann Schmidt), 0.2 M hexamethylenetetramine
(C6H12N4; 99% purity; Sigma-Aldrich), and ultra-pure water, which was subsequently
immersed in a water bath at 75 ◦C for 3 h. The sample was then retrieved and rinsed with
ultra-pure water.

For the fabrication of the TiO2/ZnO composite, the TFNA was placed in a Schott
bottle containing a solution prepared by the method described by Ismail et al. [24]. The
solution consists of zinc nitrate hexahydrate ((Zn(NO3)2·6H2O; 98.5% purity; Friendemann
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Schmidt), 0.001 M iron (III) nitrate nanohydrate (Fe(NO3)3·9H2O; 98% purity; Merck), and
0.1 M hexamethylenetetramine (C6H12N4; 99% purity; Sigma-Aldrich). The bottle was
submerged in 95 ◦C water bath for 1 h. The substrate was then removed and rinsed with
DI water.

The TiO2/rGO composite was produced by adding a layer of rGO on the TFNA via the
drop-casting method. The rGO powder was dispersed in ethylene glycol monoethyl ether
at a concentration of 0.03 mg/mL. The solution was rigorously stirred using a magnetic
stirrer and ultrasonic bath to obtain a uniformly dispersed solution. The solution was
drop-casted on the TFNA using a micropipette and dried on a hot plate stirrer to remove
the dispersant.

Finally, in the case of the TiO2/PVDF composite, the PVDF layer was prepared ac-
cording to the step introduced elsewhere [25]. PVDF powder ((CH2CF2)n; Sigma-Aldrich)
was dissolved in N-dimethylformamide (DMF, HCON(CH3)2, Sigma-Aldrich) and stirred
rigorously for 1 h. The result was a clear solution that was then spin-coated on the TFNA
layer. The sample was then heated in an oven at 100 ◦C to remove the residual solvent.

A thermal evaporator (ULVAC) was then employed to deposit a silver (Ag) metal
contact pattern for electrical properties measurement using a metal mask. Field-emission
scanning electron microscopy (FESEM, JEOL JSM-7600F) was used to examine the mor-
phology of the prepared materials. Micro-Raman spectroscopy (Horiba Jobin Yvon-79
DU420A-OE-325, 514 nm Ar laser), X-ray diffraction (XRD, PANalytical X’pert PRO), and
high-resolution transmission electron microscopy (HRTEM, FEI TECNAI G2 20 S-TWIN)
were used to characterize the morphology and the structural properties of the samples.
The chemical states of the materials were analyzed using X-ray photoelectron spectroscopy
(XPS, Thermo Scientific Nexsa G2). The electrical properties were examined using a two-
point-probe current–voltage (I-V) measurement apparatus (Advantest R6243) and a Hall
effect probing system (ezHEMS, Nanomagnetics Instrument). For the humidity sensing
characteristics, the measurement was performed in a humidity-controlled chamber (ESPEC-
SH261) connected to a current–voltage–time (I–V–t) measurement system (Keithley 2400).
The schematic diagram of the measurement system is illustrated in Figure 2.

Figure 2. Schematic diagram of the humidity sensor measurement system.
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3. Results and Discussion
3.1. Structural Properties

The FESEM images of all the prepared materials are shown in Figure 3a–e. The pure
TiO2 sample in Figure 3a shows the TiO2 nanoflower (TFNA) structure that consisted of
nanorods having an average diameter of around 150 nm. The average flower diameter is
calculated to be around 4 µm. Meanwhile, the TiO2/NiO sample shows the presence of the
NiO spherical structure, referred to as NiO nanoballs. Closer inspection reveals that the
structure consists of a porous sheet. The diameter of the nanoballs was determined to be
around 2 µm. Large voids are observed between the nanoball structures.

Figure 3. FESEM images of: (a) TiO2, (b) TiO2/NiO, (c) TiO2/ZnO, (d) TiO2/rGO, and (e) TiO2/PVDF.

The TiO2/ZnO composite exhibits a mixture of flower-like nanorod arrays of TiO2
and dispersed nanorods of ZnO. The ZnO nanorods can be distinguished from the TiO2
nanorods by their hexagonal shape, whilst TiO2 nanorods have more of a square shape.
The average diameter of the ZnO nanorods is calculated to be 727 nm. Meanwhile, only
the TFNA structure is observed for the TiO2/rGO composite because it is difficult to see
the graphene structure due to its small size. On the other hand, the PVDF is clearly visible
in the TiO2/PVDF composite, manifested by the presence of blocks of polymer structure
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among the TFNA. EDS analysis result is shown in Figure 4a–d. The presence of composite
materials is evidenced by the existence of element peaks in the EDS spectra.

Figure 4. EDS analysis of: (a) TiO2/NiO, (b) TiO2/ZnO, (c) TiO2/rGO, and (d) TiO2/PVDF.

The XRD spectra of the samples are presented in Figure 5a. A reference to JCPDS
card No. 01-072-1148 indicates that all the samples show the presence of rutile TiO2. The
most prominent peak was observed at 2θ of 27◦, which corresponds to the (110) TiO2
plane. The pristine TiO2 sample exhibits the highest peak at this point because the thin film
consisted of only TiO2 nanoflowers. The TiO2/NiO composite sample also shows peaks at
42◦, indicating the NiO (200) plane. The interplanar spacing, dhkl , and lattice constant, a,
taken at the TiO2 (110) plane were calculated using the following equations:

dhkl =
nλ

2sinθ
(1)

1
dhkl

2 =
h2 + k2

a2 +
l2

c2 (2)

where n denotes value for order of diffraction (normally 1), λ denotes X-ray wavelength of
1.54 Å, θ refers to the diffraction angle, and h, k, l is the Miller indices of the planes and the
result is tabulated in Table 1. The values are found to be comparable with the results from
other works [26–28]. Meanwhile, the crystallite size and microstrain value of the samples
were ascertained using the Williamson-Hall method based on the following equation:

βcosθ =
Kλ

D
+ 4εsinθ (3)

where β is the full width at half maximum (FWHM), θ denotes the diffraction angle, K
is the dimensionless shape factor for the crystal, D refers to the crystallite size, and ε is
the microstrain of the crystal. By plotting βcosθ against 4εsinθ, the crystallite size could
be determined from the slope while the intercept value determine the microstrain [29].
The calculated result is shown in Table 1 and Figure 5b. The pure TiO2 sample has the
largest crystallite size at 97.2 nm followed by TiO2/NiO (75.4 nm), TiO2/PVDF (65.5 nm),
TiO2/ZnO (50.5 nm), and TiO2/rGO (38.9 nm). The addition of a foreign compound often
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affects the crystal growth of TiO2, resulting in a smaller crystallite size. Accordingly, the
microstrain value also increases in all the composites except for TiO2/ZnO. This might be
due to the deformation, grain refinement and straining induced by foreign materials [30].
In their work, Luo et al. reported that the presence of rGO could suppress the grain growth
of TiO2, consequently increasing the oxygen vacancy defect at the surface [31].

Figure 5. (a) XRD patterns of different TiO2 composites, (b) Crystallite size and microstrain of
all samples.

Table 1. Diffraction angle, interplanar spacing, lattice constant, crystallite size, microstrain, and
dislocation density of different TiO2 composites.

Composite Type Diffraction Angle,
2θ (º)

Interplanar Spacing,
dhkl (Å)

Lattice Constant,
a (Å)

Crystallite Size,
D (nm)

Microstrain,
ε (10−3)

TiO2 26.88 3.31 4.68 97.2 1.72

TiO2/NiO 27.16 3.32 4.64 75.4 1.86

TiO2/rGO 26.88 3.31 4.69 38.9 1.74

TiO2/ZnO 27.19 3.28 4.63 50.5 1.26

TiO2/PVDF 26.87 3.31 4.69 65.5 1.92

Raman analysis was performed on the pristine TiO2 and TiO2/rGO samples to further
investigate the presence of carbon material, and the result is presented in Figure 6. Four
distinct peaks have been detected at raman shift of 143, 235, 447, and 612 cm−1 which
are referred to as B1g, ∗, Eg, and A1g, respectively. B1g is associated with vibration mode
while ∗ is associated with multiple phonon scattering processes [32]. The raman mode
of Eg and A1g originated from O-Ti-O bending vibration and Ti-O stretching vibration,
respectively [33]. The presence of these peaks suggested that the TiO2 crystals are in
rutile phase. The TiO2/rGO film displays D and G bands at 1376 cm−1 and 1592 cm−1,
respectively, indicating the presence of graphene in the film, and the ID/IG ratio was
calculated to be 0.9366. The breathing mode of the k-point phonons of the Ag1 symmetry is
associated with the D band, while the G band corresponds to the Eg mode of sp2 domains
of the rGO species [34]. Meanwhile, the pristine TiO2 shows no presence of the D and
G bands. The ID/IG ratio is often considered to correlate with the number of defects in
graphene [35]. The value is generally higher for rGO compared to GO, since the defects
are usually higher in rGO due to the reduction inducing processes, such as chemical [36],
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heat [37], and plasma treatment [38]. Increased in ID/IG ratio also signals to reduction in
sp2 lattice size [39]. A value between 0.9 and 1 is commonly observed for rGO [38].

Figure 6. Raman spectra of TiO2 and TiO2/rGO samples at the Raman shift range of: (a) 0–2000 (cm−1)
and (b) 1200–1800 (cm−1).

3.2. Electrical Properties

The electrical characteristics of the prepared materials were examined using a two-
point probe I-V measurement system, and the result is shown in Figure 7a,b. All samples
showed a linear response, which indicates good ohmic contact with the Ag metal contact.
The resistivity, ρ, of the films was computed based on the following formula.

ρ =
RA
L

(4)

where R represents the resistance, A denotes the area, and L is the distance between the metal
contact. The TiO2/rGO showed the lowest resistivity among all composites. RGO is known
to be a very conductive material due to its superior electron mobility [40]. It is reported that
at room temperature, its electron mobility could reach up to 200,000 cm2V−1s−1 [41]. It is
believed that the addition of rGO manages to reduce the overall resistivity of the composite.

Figure 7. (a) I-V measurement result of different types of TiO2 composites, (b) Comparison of the
resistivity value of different types of TiO2 composites.
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The Hall effect measurement was carried out using a four-point probe, and the result
is tabulated in Table 2. The carrier concentration of the TiO2 sample was recorded at
8.24 × 1014 cm−3, which is comparable with the result reported elsewhere [42]. It is also
noteworthy that the TiO2/rGO sample showed the highest mobility among all the samples.
As mentioned earlier, because graphene is famed for its high carrier mobility, hence, the
addition of rGO to TiO2 resulted in the increased electron mobility of the sample. Other
composites showed mobility values that were more or less comparable with that of the
pure TiO2.

Table 2. Hall effect measurement of TiO2 composites.

Sample Carrier Concentration
(×1014 cm−3)

Carrier Mobility
(×103 cm2/(V·s))

TiO2 8.24 0.26

TiO2/NiO 0.79 1.55

TiO2/rGO 9.93 3.46

TiO2/ZnO 1.42 1.62

TiO2/PVDF 3.34 0.28

3.3. Humidity Sensor Performance

The variations in the current signal of the TiO2 composite samples as a function of the
relative humidity (RH) level are depicted in Figure 8a. All samples show a steady increase
in the current value as the moisture level was increased from 40 to 90%RH before reverting
back to the initial value when the humidity was reduced back to 40%RH, which indicates
that all samples are responding well to the changes in the humidity level. The following
equation [43] was used to calculate the sensor response value:

S =
R40 − R90

R90
× 100% (5)

where R40 denotes the steady resistance at 40% RH, while R90 is the resistance at 90% RH.
The measurement was performed for 5 cycles, and the average value was taken. Figure 8b
shows the average sensitivity values of the prepared sensors with their error bars. All
samples show a high sensitivity of more than 18,000%, which indicates that an ultra-
sensitive humidity sensor could be fabricated using the TiO2 composite films. From the
calculation, the TiO2/rGO sample recorded the highest sensor response value at 39,590%,
followed by TiO2/PVDF, TiO2/ZnO, and TiO2/NiO. For the TiO2/NiO sample, there is
a slight decrease in the sensor response value when compared with the undoped sample.
The humidity response is greatly influenced by the density of oxygen vacancies in the
oxide materials [13,17]. The oxygen vacancies possess high affinity to water molecules and
facilitate the adsorption sites for water molecules to enhance humidity sensing response
in the process. The n-type material of TiO2 has high oxygen vacancies, whereby the p-
type material of NiO has high Ni deficiencies [13,23]. In this work, the growth of NiO
nanoballs on TiO2 nanoflower layer might be too excessive as observed in the FESEM
image (Figure 3b), as the NiO nanoballs dominate the top surface of the film. This condition
debilitates the oxygen vacancies’ role to capture more water molecules due to the existence
of high-density Ni deficiencies. The performance degradation when having excessive NiO
materials in the composite was also observed in other applications [44–46]. In addition, NiO
is a known p-type semiconductor, which could compensate electron and reduce the carrier
concentration in the process. The FESEM images also reveal the presence of large voids
on the surface of the thin film. These voids might have prevented the smooth transition
of electrons, affecting the sensor response of the device. For the TiO2/ZnO sample, it
has been documented that the n-n composite heterostructure improves the sensitivity of
the sensor. According to Yadav et al., ZnO and TiO2 have electron vacancies that can
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strongly attract H+ ions from water molecules [47]. Meanwhile, the TiO2/PVDF sample
recorded the second highest sensor response at 29,260%. According to Mallick et al.,
PVDF is an inherently hydrophobic material. The addition of TiO2 improved the surface
wettability of the TiO2/PVDF composite and subsequently improved its hydrophilicity,
which resulted in the improved humidity sensing performance [25]. A breath detection
test was also conducted for the TiO2 and TiO2/rGO samples. A human subject breathed
near the sensor and the current changes were recorded for several cycles. The results are
shown in Figure 8c. Both samples displayed rapid response and recovery to human breath.
However, the TiO2/rGO sample exhibited higher current signal and response compared to
the TiO2 sample only. A comparison of the humidity sensing performance between our
device and the devices from the works of other groups is summarized in Table 3.

Figure 8. (a) Humidity response of the prepared humidity sensor, (b) Comparison of sensor response
between different humidity sensors, (c) Breath test results for TiO2 and TiO2/rGO samples.
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Table 3. Comparison of sensor response with other composite-based humidity sensors.

Material Sensor Type Humidity Range
Sensor

Response [Calculation
Formula]

MWCNT/Polyacrylic
acid [48] Resistive 30–90%RH 913.8% [(∆R/Ro)× 100%]

Graphene/Cellulose [49] Resistive 5–90% RH 290% [(∆R/Ro)× 100%]

ZnO/SnO2 [50] Resistive 40–90% RH 75,440%
[(R40/R90)× 100%]

Mn-doped NiO/NiO [51] Resistive 40–90% RH 27,000%
[(R40/R90)× 100%]

MWCNT/hydroxyethyl
cellulose [52,53] Resistive 20–80% RH 290% [(∆R/Ro)× 100%]

Graphene/Methyl-red
[54] Resistive 5–95% RH 9636% [(∆R/Ro)× 100%]

Cellulose
nanofiber/graphene

nanoplatelet [55]
Resistive 30–90% RH 14,000% [(∆R/Ro)× 100%]

Cellulose
nanofibers/CNT [56] Resistive 11–95% RH 6990% [(∆I/Io)× 100%]

TiO2/rGO (Present work) Resistive 40–90% RH 39,590% [(∆R/Ro)× 100%]

There are several factors that could be associated with the enhanced performance
of the TiO2/rGO composite. It is reported that the addition of 2D GO could increase the
specific surface area of a composite [31,57,58]. Graphene itself tends to be hydrophobic in
nature, with its wetting characteristic being similar to that of graphite [59]. On the other
hand, TiO2 has high hydrophilicity, owing to the presence of water dissociative sites of the
Ti3+ defect. Adding both of these materials together yields a hydrophilic surface suitable
for the adsorption of water molecules. Another possible reason behind the improvement in
the sensor response is the effect of the high conductivity of rGO due to its high electron
mobility [60]. On its own, TiO2 is a high electrical resistance material [57]. However, when
coupled with rGO, the overall resistance of the composite is reduced greatly, as reported
by researchers [40]. RGO could serve as an efficient electron channel because of its high
electron mobility [58].

3.4. HRTEM and XPS Analysis of TiO2/rGO

To really understand the reason behind the excellent performance of the TiO2/rGO
composite-based humidity sensor, further analysis on the sample was carried out. The
HRTEM images of the TiO2/rGO composite are shown in Figure 9a. Both the rGO sheet
and TiO2 nanorods are clearly visible. From the HRTEM image, the close proximity of TiO2
and rGO suggested that the transfer of electrons between the two materials could take
place, as reported by Sun et al. [61].

The high-magnification HRTEM image in Figure 9b reveals the d spacing value of
0.32 nm, which is in line with the (110) plane. This value is consistent with the calculation
made earlier using the XRD data. The selected area electron diffraction (SAED) pattern
(inset Figure 9b) reveals rings of the d spacing, indicating the presence of the (110) plane,
which is consistent with polycrystalline rutile TiO2.
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Figure 9. (a) TEM image of the TiO2/rGO composite, (b) SAED of TiO2/rGO.

The XPS survey scan spectra of the TiO2 and TiO2/rGO sample is presented in
Figure 10a. Both samples showed the presence of C 1s, Ti 2p, Ti 2s, and O 1s peaks,
with the TiO2/rGO sample showing a higher intensity C 1s peak, due to the presence of
rGO on the TiO2 nanoflower surface. The narrow scan of Ti 2p in Figure 10b,c reveals
two prominent peaks at the binding energies of 459 eV and 464 eV corresponding to Ti
2p3/2 and Ti 2p1/2, respectively, which arises from spin-orbit splitting. A shoulder peak
at 460 eV is noticeable in the TiO2/rGO sample, which suggested the presence of Ti3+

species [62,63]. This species is often considered responsible for the adsorption of water
molecules by providing ample active sites [64]. Figure 10d reveals the narrow scan of
C 1s. The deconvolution of the spectra reveals 5 peaks that can be assigned to carbon from
C=C sp2, C-C sp3, C-O, C=O, and O-C=O bonds. Finally, Figure 10e,f show the core level
scan O 1s of TiO2 and TiO2/rGO, respectively. The main peak at 530 eV is attributed to
the lattice oxygen. For the TiO2/rGO sample, a peak is also observed at 530.7 eV, which
corresponds to the oxygen vacancy [65]. Both samples also displayed a peak at 532.1 eV
corresponding to chemisorbed oxygen [64]. It is reported that this oxygen species could
play a part in the redox reaction on the surface of the material.

Figure 10. Cont.
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Figure 10. (a) XPS survey scan spectra, (b) narrow scan Ti 2p of TiO2, (c) narrow scan Ti 2p of
TiO2/rGO, (d) narrow scan C 1s of TiO2/rGO, (e) narrow scan O 1s of TiO2, and (f) narrow scan O 1s
of TiO2/rGO.

3.5. Hydrophilicity of TiO2/rGO

The contact angle measurement was conducted for the rGO only thin film and
TiO2/rGO composite thin films to examine the hydrophilicity of the samples. As observed
in Figure 11a,b, the contact angle of rGO alone is 73.4◦, which indicates a hydrophobic
surface. On the other hand, the TiO2/rGO contact angle was recorded at almost 0◦, sug-
gesting that the addition of the TiO2 nanostructure greatly improves the hydrophilicity
of the sample. It is well documented that the Ti3+ defect sites increase the hydrophilicity
of TiO2 by promoting the dissociative adsorption process [66]. The high hydrophilicity
is obviously beneficial for the humidity sensor application, as it increases the amount of
adsorbed water molecules.

Figure 11. Contact angle measurement result of the (a) rGO thin film and (b) TiO2/rGO composite.
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3.6. Humidity Detection Mechanism

The humidity detection mechanism of the TiO2/rGO nanocomposite sensor could be
explained by the following. At a low humidity level (40% RH), free electrons at the surface
of TiO2 react with the surrounding oxygen atoms according to the following reactions:

O2 + e− → O−2 (6)

O−2 + e− → 2O− (7)

2O− + e− → O2− (8)

This reaction traps the free electron, thus reducing the number of carriers of the
sensing element and increasing the resistance. At this point, the resistance between the
metal contact is very high. When the humidity increases, water reacts with the adsorbed
oxygen ions, as described by the following equation.

2H2O + O−2 → 2H2O2 + e− (9)

Free electrons would be released back through this chemisorption reaction, and the
resistance would decrease.

When the humidity level is further elevated, physisorption takes place whereby
another layer of water attaches to the chemisorbed water layer through hydrogen bonds.
Under the presence of an electrostatic force, hydronium ion H3O+ would be formed by the
following equation.

2H2O→ H3O+ + OH− (10)

Hydrolysis occurs and H3O+ would subsequently be converted to H+ ions.

H3O+ → H2O + H+ (11)

This ion would contribute to the increase in the current in a phenomenon called the
Grotthuss chain reaction or proton hopping. This type of conduction is called the ionic
conduction. If the humidity is then further increased, water molecules would fill up the
spaces between the TiO2 structure, driven by capillary force. From here on, OH+ and H+

ions can move freely, and electrolytic conduction takes over.
The addition of rGO with its high electron mobility accelerated the changes in reducing

the resistance of the thin film. As shown in Figure 9a, the interconnection between rGO
and the TiO2 nanorod structure would enable the efficient electron transfer between them.
Meanwhile, the increased oxygen vacancies helped increase the electron concentration
through the following reactions [31,67]:

H2O(gas)→ H2O+(ads) + e− (12)

H2O(gas) + O2−(ads) + V2−
o → 2OH−(ads) + 2e− (13)

The humidity detection mechanism of rGO is described by the following. At a lower
RH level, the initial layer of water molecules attaches to rGO via double hydrogen bonding.
This strong bonding limits the hopping transfer of protons, leading to a low conductivity.
Meanwhile, the second layer of water is physisorbed on the oxygenated groups of graphene
through single hydrogen bonding and is more likely to move freely. Under the influence of
an electrostatic field, the ionization of the water molecules takes place and a huge number
of hydronium ions (H3O+) are formed. A subsequent increase in the RH saturates the active
sites on the graphene surface, allowing more free movement of excess water molecules.
Hydronium ions are transported freely in the water layers through the Grotthuss chain
reaction (H2O+ H3O+ = H3O++ H2O). As a result, the resistance is drastically reduced by
the rapid transmission of ions. In addition, at an increased humidity level, water molecules
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are able to penetrate into the interlayer of rGO, leading to the hydrolysis of the oxygenated
group, which would also increase the conductivity [41].

The proposed energy band diagram at the interface between TiO2 and rGO is exhibited
in Figure 12a–c. The band gap energy, Eg of rutile TiO2 is 3.0 eV [68] while the work function,
φ and electron affinity, χ are 4.2 [69] and 3.9 eV [70], respectively. Meanwhile, the work
function, φ of rGO is 4.75 eV [71]. It is estimated that a Schottky junction forms between
TiO2 and rGO when they are in contact with each other due to the appropriate difference
in work function between the two materials, as shown in Figure 12a. At a low humidity
level, oxygen atoms from the air are adsorbed by TiO2 (Figure 12b). This process lowers the
number of free electrons, and the depletion region becomes wide, prohibiting the transfer
of charge across the junction. At this point, the resistance value between the metal contact is
quite high. When water molecules in the environment increases, H2O, which is a reducing
agent, increases the number of electrons in TiO2, which would be transported from the
conduction band of TiO2 to rGO, effectively reducing the Schottky barrier with a narrower
depletion region, as shown in Figure 12c. This reduces the depletion region width, and the
conductivity between the material increases dramatically, which translates to the increase
in the humidity sensor response. The synergistic effect of the combination of these two
types of humidity sensing mechanisms produced an improved sensor response compared
to the sensor response of a pure TiO2 based humidity sensor.

Figure 12. Proposed energy band diagram of the TiO2/rGO humidity sensor.
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4. Conclusions

Resistive-type humidity sensors were fabricated and tested using various types of
TiO2 composites. The combination of TiO2 and rGO produced the best result with the
highest sensor response of 39,590%, followed by TiO2/PVDF, TiO2/ZnO, and TiO2/NiO.
The improved performance of the TiO2/rGO composite is associated with the enhanced
conductivity and hydrophilicity of the sensing material. The introduction of rGO induced
the formation of Ti3+ sites and oxygen vacancy, as evidenced by the XPS result. In addition,
the nanocomposite is also postulated to have a higher surface area which provides more
adsorption sites. Furthermore, the formation of the Schottky junction between TiO2 and
rGO allows for the increased modulation of the sensing current before and after exposure
of the water molecules.
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