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Abstract: Structural health monitoring (SHM) and safety assessment are very important areas for
evaluating the behavior of structures. Various wired and wireless sensors can measure the physical
responses of structures, such as displacement or strain. One recently developed wireless technique is
a light imaging detection and ranging (LiDAR) system that can remotely acquire three-dimensional
(3D) high-precision coordinate information using 3D laser scanning. LiDAR systems have been
previously used in geographic information systems (GIS) to collect information on geography and
terrain. Recently, however, LiDAR is used in the SHM field to analyze structural behavior, as it
can remotely detect the surface and deformation shape of structures without the need for attached
sensors. This study demonstrates a strain evaluation method using a LiDAR system in order to
analyze the behavior of steel structures. To evaluate the strains of structures from the initial and
deformed shape, a combination of distributed 3D point cloud data and finite element methods (FEM)
was used. The distributed 3D point cloud data were reconstructed into a 3D mesh model, and strains
were calculated using the FEM. By using the proposed method, the strain could be calculated at any
point on a structure for SHM and safety assessment during construction.

Keywords: LiDAR system; 3D point cloud data; structural health monitoring; safety assessment;
steel plate; interpolation method; strain evaluation method

1. Introduction

In recent years, as structures have become increasingly diversified in complexity and size,
structural health monitoring (SHM) systems and safety assessments during construction have become
more important topics. As a result, research on these topics is actively being conducted [1-6]. SHM and
construction safety are the evaluation of the physical responses (displacement, strain, and stress) of
civil engineering structures such as bridges, dams, skyscrapers, and aircraft wings, etc. through the
use of various types of sensors [7,8]. One of the most important aspects of SHM is the measurement
of stress and strain, which are essential for understanding the behavior of structures [9]. Strain is
an index indicating a change in an object according to the internal force generated by an external
force, and various strain sensor technologies have been developed to measure it accurately. Sensors
such as electrical strain gauges (ESG), fiber optic sensors (FOS) [8,10], vibrating wire strain gauges,
and fiber Bragg gratings (FBG) [11] have a high degree of accuracy in stress evaluation through strain
measurements in the structural field. These sensors are also used for various other purposes, as well
as structural fields [12]. However, wire-based attached or embedded sensors used for SHM and
construction safety have some drawbacks. Depending on the measurement location and installation
method, a great deal of effort is required [13], and there is a risk the sensors could be damaged during
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installation. In addition, wired-based sensors are sensitive to temperature and humidity, making
them difficult to operate based upon weather conditions. Additionally, these kinds of sensors have
a short lifespan, which requires a large amount of human and economic cost for maintenance [14].
Nowadays, as structures are becoming taller and larger, the measurement range is increasing, and
the installation of wired-based sensors is becoming more difficult and more limited [15]. In order to
overcome and improve the chronic limitations of these conventional sensors, research on non-contact
remote measurement methods for structural behavior analysis is increasing [16,17].

Recently, a system called terrestrial laser scanning and light imaging detection and ranging
(LiDAR), which was first introduced into the geographic information system (GIS) for acquiring
geography and terrain, has been expanded in the field of architecture. These systems are used for
the development of structural response monitoring systems, such as building information modeling
(BIM) and SHM [18,19]. LiDAR system is a new technology that can rapidly acquire three-dimensional
(3D) coordinate information using laser scanning and is used for modeling complex and diverse
objects [20,21]. In addition, it can generate geometric representations of complex surfaces of objects
in real-time with the accurate and dense 3D point cloud, which utilizes numerous points [22,23].
Also, it can remotely acquire 3D coordinate information data for behavior monitoring of buildings,
and infrastructure, along with traditional uses such as geography and terrain modeling, geological
exploration and surveying, and forest management [24-28]. Unlike conventional wire-based attached
or installed sensors, an advantage of a LIDAR system is that it can measure the shape of structures
before and after deformation due to the actual external loading [15]. By contrast, conventional sensors
can only provide measurements at certain fixed positions or increments. With conventional sensors,
there are also other limitations. For example, a structure’s initial shape or large size can make the
deformation during manufacture, transportation, and construction difficult to assess using traditional
wire-based sensors.

This study describes how to evaluate the strains for the overall shape of a curved thin steel plate
under lateral pressure using 3D point cloud data obtained from the LIDAR system. The 9 mm steel plate,
used as an inner form for the construction of an outer concrete wall of a liquefied natural gas (LNG)
storage tank, was easily deformed by an external force during construction [29-31]. The deformation
of the plate occurs due to pressure from the fresh concrete during the construction of the outer concrete
wall. In order to perform this experiment, only a part of the outer concrete wall of the LNG storage
tank was constructed in full-size mock-up, and the ESGs and LiDAR system were used to measure
the strain and shape of the steel plate. The 3D point cloud data was then converted to a mesh model
through a specific interpolation method, and finally, the strains were calculated by generating a finite
element model using the initial shape of the steel plate. The calculated strains were then compared
with the measured strains through the actual ESGs to verify the applicability to the strain evaluation
method developed in this research.

2. Materials and Methods

2.1. LiDAR System

LiDAR was developed in the 1960s as a measurement technology for acquiring distance and
coordinate information of targets using a laser pulse [32]. It is also possible to record 3D spatial
coordinates with many points and coordinate information on the surface of the objects in a relatively
short time with a measurement speed of 1000 to 10,000 points or more per second [33,34]. Since the 1970s,
it has been used to collect 3D information on GIS. In addition, with the continuous development of laser
technology, LiDAR system technologies for various applications have been developed. For example,
LiDAR systems are currently used in aircraft, satellites, etc. to precisely observe and analyze the Earth’s
atmosphere, geography, and environment. LiDAR is installed on spacecraft and exploration robots
as a means to supplement a camera’s performance, and measure the shape and distance of targets.
On the ground, simple LiDAR technologies have been commercialized for remote measurement and
speed violations, including a 3D scanner for autonomous vehicles. Recently, LIDAR is being used
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as a core technology for structural behavior monitoring systems in fields such as BIM and SHM,
and its utilization and importance are gradually increasing. The advantages of the LIDAR system
include the ability to remotely measure inaccessible targets such as coastal areas, which are difficult to
assess using ground survey operations, as well as nuclear reactors, areas with complex geography,
and high-rise buildings.

The 3D laser scanner technology used in structural behavior analysis is based on the time of
flight (TOF) principle and uses high energy density and a short period laser pulse signal to obtain 3D
coordinate information. The 3D coordinate information is set by calculating the coordinates of the
reflection point. This is accomplished by measuring the arrival and return time, velocity, horizontal and
vertical angles of the laser pulses reflected by the object, and emitted from the scanner. The measured
objects are represented by a point cloud, which consists of several points with coordinate values in
3D space [35]. The coordinate values of each point in the point cloud are generated based on the
scanner, which changes according to the position of the scanner. A schematic showing the conceptual
composition and principles for obtaining 3D coordinate information using a LIDAR system is shown
in Figure 1.
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Figure 1. Principle for acquiring 3D coordinate information of the object using the light imaging
detection and ranging system.

Unlike contact sensors, a LIDAR system can remotely obtain the 3D coordinate information of entire
objects from a single device in a short period of time, allowing engineers to make measurements while
maintaining a safe working distance, and without requiring direct access to the objects [36]. LiDAR,
therefore, makes it possible to reduce work time and labor resources [37]. In addition, the installation of
the LiDAR device and the acquisition process of point cloud data makes it easier to use than wire-based
contact sensors. However, during data acquisition, the LiDAR device must be safely installed on
the ground where it is secured, and movement around the objects should be minimized so that the
emitted laser pulse does not cause interference. In addition, to collect point cloud data using laser
pulses emitted and reflected through the LiDAR device, the surface of the test target should not be
shiny, so the steel plate was coated in a dark color, as shown in Figure 2. The LiDAR device used in
this research is the Leica ScanStation 2, shown in Figure 2, and the specifications and performance are
shown in Table 1.
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Steel plate

Figure 2. 3D LiDAR system device (Leica ScanStation 2).

Table 1. Specifications of the 3D LiDAR device used in this research.

Time of flight pulsed, very-high speed

Type
Max. measurement distance 300 m
Max. scanning rate 5000 points/sec
Field of view Homonta sar
Accuracy of single measurement Distance 4 mm
Angle 60 prad

2.2. Test Target

Displacement measuring sensors such as linear variable differential transformers and ring-type

displacement transducers that measure the displacements of structures can only measure location,
without considering the structure’s initial shape. Accordingly, the more complicated and larger the
structure, the more limited the understanding of its behavior and deformation shape, making it difficult
to predict the overall deformation of the structures from the measured displacements.

Although measurements with conventional displacement sensors are limited, we selected a test
target that can be measured with the LiDAR system. The chosen test target is a steel plate used for the
construction of an outer concrete wall in LNG storage tanks, where it is used as one of the containment
structures. The steel plates, used as permanent inner forms, are structures that can be deformed under

lateral pressure due to fresh concrete casting, as shown in Figure 3.
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Figure 3. Detailed drawing showing the deformation of the steel plate under lateral pressure during

concrete casting.
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In summary, as there are few techniques for safely evaluating the construction of outer concrete
walls using inner form steel plates, the steel plates were selected as a test target for the LIDAR system.
Consequently, a real scale mock-up, which consisted of a partial outer concrete wall, was constructed
with the following dimensions: 10 m high, 9.2 m wide, and 0.75 m thick. The steel plate was 9 mm
thick, and a detailed drawing of the mock-up is shown in Figure 4. The tie-rods consisted of steel
bars, which were used to prevent falling and bulging of the steel plates due to concrete casting.
The tie-rods were connected to the steel plates and the precast concrete panels, as shown in Figure 4a.
The construction views of the mock-up are shown in Figure 5.
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Figure 4. Detailed drawing of the mock-up [Unit: mm]: (a) Side view; (b) Top view.
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Steel plate

Figure 5. Construction view of the mock-up showing: (a) Components of the outer concrete wall;
(b) Concrete casting between the steel plates and precast concrete panel; (c) Completed mock-up.

3. Methodology for Strain Evaluation

The specific method for evaluating strain is important in the SHM field, as it is based on the
3D coordinate information of the test target acquired from the LiDAR system. The distribution of
the point cloud 3D coordinate information of the structure acquired from the LiDAR system may
be discretized due to the error of the specifications of the laser scanner. In addition, in order to
construct a model suitable for the evaluation of displacements and strains, a numerical model capable
of structural analysis must be generated that considers the initial and final deformation shape of the
structure, respectively.

The process of the strain evaluation method using the LiDAR system mainly consists of the
following steps: (1) acquisition of high-resolution 3D coordinate information data about the initial
shape and the deformed shape of the structure from a single LiDAR system device, (2) generation
of a point cloud model based on the acquired 3D coordinate information, (3) transformation of the
coordinate system of the point cloud model from a LiDAR coordinate system to a structural coordinate
system for more accurate structural analysis, (4) conversion of the coordinate-transformed point
cloud models to the mesh models using a specific interpolation method, (5) calculation of the relative
displacements from the mesh models of initial and deformed shapes, (6) and finally the strains are
calculated using a finite element model combined with finite element method (FEM) by inputting the
relative displacements in the mesh model of the initial shape.

Figure 6 shows the flowchart for the LIDAR-based strain evaluation method proposed in this study.
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I. Acquisition of 3D point cloud data

Acquisition of 3D coordinate information data
obtained from LiDAR system device

!

I1. Point cloud model

Generating a point cloud model
using a original 3D coordinate information
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rotation translation based on the point cloud model
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v

III. Mesh model using interpolation method
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v

Generation of initial and deformed mesh models
according to calibration plane

i

Calculation of relative displacements (D mm)
from initial and deformed mesh model information
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IV. Finite element model
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information of initial mesh model
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| Inputting the D as boundary condition for each node |

| Calculation and evaluation of strains |
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Figure 6. Flowchart for the LIDAR-based strain evaluation method used in this study.

3.1. Acquisition of the 3D Point Cloud Data from LiDAR System

The 3D point cloud data of the test target acquired through the LiDAR system is generated
by setting the LiDAR system device as the reference of the coordinate system. Figure 7 shows a
visualization of 3D point cloud data, which includes 3D coordinate information. In this article, this is
described as a point cloud model. However, this point cloud model is not suitable for accurately
analyzing structural behavior. That is, for accurate structural analysis, a new point cloud model must
be generated by transforming the original 3D coordinate information data from the LiDAR coordinate
system to the structural coordinate system.
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3D point cloud data

Figure 7. Original point cloud model of the test target.

In order to perform a coordinate transformation, the origin of the structural coordinate system
must be determined to accurately understand the structural behavior by considering the structural
deformation and characteristics. In this research, the origin of the structural coordinate system was
set at the bottom center of the test target. When the origin position of the coordinate system is set,
3D coordinate transformation, including parallel and rotational translation, is needed, as shown in
Figure 8.

Coordinate-transformed
point cloud mode

Original
point cloud model

Coordinate
transformation

Pxyzs nyz

x' LIDAR
coordinate system

0!

X2 2z
Figure 8. Coordinate transformation of the point cloud model.

The origin of the LiDAR coordinate system is O’(x}, y,, z,) and the origin of the structural

coordinate system is O(xo, Yo, Zo), and x,, Yo, and z, are equal to zero. Parallel translation consists of
converting the origin from O’ (x/, v/, z}) of the LIDAR coordinate system to the origin O(x,, Yo, zo) of
the structural coordinate system, and the parallel translation (Pyy;) can be represented as follows:
Prye = (Xo =X}, Yo— Yo 20— 24) = (=X}, =¥}, —2,) )
Rotational translation is the transformation of the axis of the LiDAR coordinate system to match
the positive direction of the structural coordinate system axis. Rotation angles «, 3, and y are defined
according to the positive direction of the axis of the structural coordinate system, and rotational
translation (Ryy;) and Ry, Ry, and R; are represented as follows:

nyz = RnyRz (2)
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The 3D point cloud model of the test target transformed from the LiDAR coordinate system to
the structural coordinate system through the parallel translation and rotation translation is shown in
Figure 9.
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Figure 9. Coordinate-transformed point cloud model in the test target coordinate system: (a) Top view;
(b) Side view; (c) Front view.

3.2. Finite Element Model Generation

The coordinate-transformed point cloud models provide visual information about the deformation
shape of the structure. However, since the points constituting the point cloud model are irregularly
disrupted with noise, the coordinates of some regularly distributed points are needed in order to
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calculate the displacements at an arbitrary point. Therefore, this section describes the procedures for
the mesh models that can accurately identify the 3D coordinate information of the structure based on
transformed point cloud models and the generation procedures of the finite element models that can
evaluate strain.

First, to generate the mesh models, it is necessary to process data that can be numerically analyzed
for discrete point cloud models. To perform this process, a specific interpolation method was used
with reference to the digital elevation model (DEM) and the Kriging interpolation method [38,39].
The process of the specific interpolation method used in this research is as follows: (1) according
to the number of measurement points, in the transformed point cloud models, M point groups are
created by dividing the calibration plane (C x C) at regular intervals, C, in the x and y-xis directions as
shown in Figure 10, and M point groups increase as the size of the calibration plane decreases and
correspond to the number of measurement points, (2) the first step procedure should be applied to
both the transformed point cloud models of initial and deformed shape, (3) finally, the coordinates
of the representative points (which is called interpolation point) of each point group (xc, yc, zc), and
xc and y, are set to the center points of the calibration plane. Interpolation points and interpolation
planes are defined as nodes and elements for generating mesh models. The z. of the interpolation
point is calculated as the average of the given cluster points in the calibration plane. The coordinate
values of x, y., and z. of the interpolation point are calculated as follows:

C
Xe = Ye = E (4)
o= Yo (@)i= (1,23~ N) ©)

where C is the side length of the calibration plane, and the unit is mm. N is the average value of the
number of points in the M point groups generated for each calibration plane. When the calibration
plane is set to a constant value, N increases as the distance between the LiDAR system device and the
structure gets closer, and a dense point cloud data can be obtained.

(x;, ¥i, z;) in calibration plane

Interpolation point
(xca yC: ZC)

Figure 10. Interpolation method of the coordinate-transformed point cloud model.

The mesh models for the initial and deformed shape of the structure are generated by reflecting the
size of the calibration plane as a parameter. For obtaining the mesh models suitable for strain evaluation,
the appropriate number of interpolation points is required depending on the number of points in
the calibration plane. Therefore, the calibration plane was classified into six cases, 30 x 30 mm?,
40 x 40 mm?Z, 50 x 50 mm?, 60 x 60 mm?, 80 x 80 mm?Z, and 100 x 100 mm?2. Table 2 shows the number
of point groups, M, points in the calibration plane, N, interpolation points, and interpolation planes for
each case determined by the calibration plane.
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Table 2. The number of point groups, interpolations points, and planes for cases 1-6.

Case Calibration Plane M N Interpolation Point  Interpolation Plane
Case 1 30 x 30 35244 47 35244 34846
Case 2 40 x 40 19899 84 19899 19600
Case 3 50 x 50 12880 132 12880 12640
Case 4 60 x 60 8844 190 8844 8645
Case 5 80 x 80 5050 337 5050 4900
Case 6 100 x 100 3240 527 3240 3120

The mesh model, which is generated using the specific interpolation method, and the transformed
point cloud model, are shown in Figure 11. The mesh models for the initial and deformed shapes are
shown in Figure 12.

/ Interpolation plarﬂ
Interpolation point
300
200
Z 100 |
: . 9000
0 ; 8000
7000 /
-100 ve - 5 »
-5000 -2500 0 2500 5000 6000

X

Figure 11. Transformed point cloud and mesh model [Unit: mm].

linitial mesh model
B Dcformed mesh model
300
200
Z 100 — |
9000
0 8000 y
7000
-100 ; ’ i -
-5000 22500 0 2500 5000 6000

X

Figure 12. Mesh models of initial and deformed shape [Unit: mm].

The second step is to calculate the relative displacements between the mesh model considering
the initial shape, and the mesh model to reflect the deformed shape. The mesh models for the
generated initial and deformed shapes have the same number of nodes and elements. In addition,
nodes corresponding to each other between the initial mesh model and the deformed mesh model
have only the same coordinates of x and y, and z is different. In other words, the difference of z
between the corresponding nodes is the relative displacements to be obtained at this step. The relative
displacements, D, of each node, can be calculated as follows:

D= \/ (e i =% )+ (Yea=Ye i) + (Zea—2c4) (6)
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where (x; , Y i, Zc i) is a coordinate of the node for the initial mesh model, and (x; 4, y. 4, 2c 4) is a
coordinate of the node for the deformed mesh model. Figure 13 represents the relative displacements
calculated from the centerline of the steel plate for each case.

9.5 T
—Case 1
—Case 2
9l —Case 3|
—Case 4
Case 5 8.
—Case 6| .~
8.5 1.
E 8¢
=
20
=75
7 L
6.5} 10
6 . . .
-10 -5 0 5 10 15

Relative displacement [mm]

Figure 13. Comparison of the relative displacements for cases 1-6.

Finally, a finite element model considering the initial shape is composed of shell elements using
the commercial finite element analysis (FEA) software ABAQUS [40]. This model is based on the node
and element information from the initial mesh data. Among the input parameters for the material
properties of this model, the modulus of elasticity is 200 GPa, and the Poisson’s ratio is 0.3. Then,
the calculated relative displacements, D, are input into each node as the boundary condition of the
test target, and the strain values are calculated using FEA. This method can accurately evaluate the
deformation shape based on the discretized point clouds with 3D coordinate information, and load
conditions are not required for its application. Figure 14 shows one of the finite element models.

(a) (b)

Figure 14. ABAQUS finite element model: (a) Initial model; (b) Model after inputting the relative
displacements as boundary conditions [Unit: mm].
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4. Strain Evaluation

To verify the applicability of the strain evaluation method using the 3D coordinate information
obtained from the LiDAR system, an experimental test was performed on a curved thin steel plate
structure subjected to lateral pressure of fresh concrete casting during a simulated construction. For the
experiment, ESGs, which are commonly used strain sensors, were attached to the steel plate. The ESGs
were continuously used to acquire data during the concrete casting. The LiDAR system was then only
applied to capture the initial and deformed shape of the steel plate. The measured values from the
ESGs and the strain values were calculated using the finite element models for each case, which was
generated from the LiDAR system and compared and verified for applicability.

4.1. Test Setup

Steel plates were used as test targets in this research. The plates were chosen in order to
demonstrate the application of a 3D coordinate point cloud LiDAR system for the SHM field. The steel
plates used in this research were manufactured using the ASTM A516 standard [41], and are typically
used as a vapor barrier. After the installation of the steel plates, the ESGs were attached to the exposed
surface of the steel plates, as shown in Figure 15. The locations of the ESGs were selected based on the
tie-rod positions. The ESGs are in the centerline of the steel plate and attached 6520 mm, 6895 mm,
7520 mm, 8145 mm, and 8770 mm from the ground. In addition, two ESGs were attached at each
location in the vertical and horizontal directions. After the attachment of the ESGs, the LiDAR device
was installed by adjusting the distance and angle measurement, in order to fully cover the steel plate.
Considering this, the LIDAR system device was fixed at a distance of 4 m from the exposed surface of
the test target, as shown in Figure 15. Then, only the surface deformation of the test target, except the
tie-rods, was measured using the LiDAR system before and after concrete casting.

8770 - —
= 8145 o Strain gauges Strain gauges
-;-)9 7520 - 0 in horizontal in vertical
= 6895 gl direction direction
6520 T
Tie-rod —|
| Zlg
|~
—len
y' —
T 4000 I
o
z' y 2
IS
, M
0/ X 7
| 0 o - -
LiDAR n
device —

Figure 15. Drawing showing the placement of the electrical strain gauges and LiDAR system relative
to the steel plate [Unit: mm].

4.2. Results and Comparison

In Section 4, point cloud models, mesh models, and finite element models were generated
sequentially based on the 3D coordinate information of the test target acquired through the LiDAR
system. The ABAQUS software was used for the analysis of finite element models generated with the
calibration plane as a parameter. The analysis results shown in Figure 16 give the strain distribution
for each finite element model, and consider the initial shape and the deformed shape of the test target.
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In addition, the distributions of the displacement and stress in the steel plate are shown in Figure 17.
Figure 18 shows the comparison of the strain values measured on ESGs attached to the test target and
the strain values of each finite element model.

+8.7e-04

+3.7e-04

()

Figure 16. Finite element models showing the strain distribution for: (a) Case 1 (30 x 30); (b) Case 2
(40 x 40); (c) Case 3 (50 x 50); (d) Case 4 (60 x 60); (e) Case 5 (80 x 80); (f) Case 6 (100 x 100).
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+2.7e+01
+2.5e+01

(b)

Figure 17. Displacement and stress distribution of the finite element model: (a) Distribution of the
absolute displacement [Unit: mm]; (b) Distribution of the von Mises stress [Unit: MPa].
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Figure 18. Comparison of strain values from ESGs and finite element models for cases 1-6: (a) Vertical
strain curves; (b) Horizontal strain curves; (¢) Comparison of detailed strain curves.

Figure 16 confirms that there is a difference in strain distribution, depending on the case. Important
factors such as displacement, strain, and stress can be identified at any point on the test target and
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utilized for understanding the structural behavior. The results are shown in Figure 17. The polynomial
strain curve [15], shown in Figure 18a, is a two-dimensional analysis by FEM using a high-order
polynomial function, one of the regression methods, based on the point cloud in the center of the steel
plate. The reason for the strain curves to fluctuate, as shown in Figure 18 is due to the tie-rods. Since
the tie-rods are directly welded to the steel plate, small displacements of the steel plate occur at the
tie-rods locations. In other words, as shown in Figures 16 and 17, the convex (expansion) and concave
(contraction) phenomena appear on the steel plate depending on the locations of the tie-rods, so the
strain curves fluctuate, as shown in Figure 18. The strain curve through the polynomial function shows
a similar tendency to the strain curves calculated by the method developed in this study. In addition,
the strain curves shown in Figure 18 indicate that strain noise occurs as the calibration plane gets
smaller. By comparison, as the calibration plane increases, the noise decreases, but the magnitude of
the strain amplitude tends to decrease. The strain values measured from the ESGs are similar to the
strain values calculated from the finite element models, but it is not possible to determine which case is
more similar to the measured values. Therefore, in order to select a finite element model that includes
the most appropriate calibration plane, it is necessary to discriminate based on the mean of the strain
differences between the measured values of the ESGs and the calculated values of each finite element
model, as shown in Figure 19.
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Figure 19. Mean of the strain differences for cases 1-6 between measured strain values of the ESGs,
and the calculated values from the finite element models: (a) The mean of the strain differences in the
vertical direction; and (b) Horizontal direction.

Analysis of the mean strain differences for each case from the measured ESG values showed that
the difference in strain decreased and then increased according to the order of the calibration plane.
Comparing the mean differences of each case in the vertical direction, the results were: 111 x 107 in
case 1,and 39 x 107%,31 x 107,26 x 107,43 x 107, and 104 x 10 for cases 2, 3, 4, 5, and 6, respectively.
The smallest difference is case 4, with a 60 X 60 calibration plane. In addition, the mean differences
in the horizontal direction are 103 x 1076 for case 1, and 52 x 107, 27 x 1076, 49 x 1076, 140 x 107°,
and 243 x 107° for cases 2, 3,4, 5 and 6, respectively. In this study, the smallest difference was noticeable
in case 3, with a 50 x 50 calibration plane.

5. Conclusions

In this study, a method for evaluating the strain at any point on a structure using a 3D coordinate
information obtained from the LiDAR system was developed. We demonstrated that the strains
could be calculated at any point on the structure based on the validated finite element model. Strain
evaluation methods involved several methods: the process of calculating strain through the generation
of coordinate-transformed point cloud models, the generation of mesh models using the specific
interpolation method with considering the calibration plane, and finally, the generation of finite element
models to analyze the structural behavior. The finite element models consisted of six cases with the
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calibration plane as a parameter. This method was applied to a curved thin steel plate subjected to
the lateral pressure caused by fresh concrete. The ESGs were attached to the steel plate to measure
the strain during the concrete casting, and at the same time, the initial and deformed shapes of the
steel plate were measured by introducing the LiDAR system device. The mesh models of the initial
shape were generated from the 3D point cloud data did not have a constant curvature, as in the design
drawing, and they are slightly distorted in the vertical and horizontal directions. This kind of distortion
and deformation typically occurs during the manufacturing or installation of the steel plate. Analyzing
the structural behavior with only the deformed shape without considering these initial deformations
can, thus lead to errors and miscalculations. Therefore, it is appropriate to evaluate the structure
behavior using a finite element model by measuring both the initial and the deformed shape of the
structures using a LiDAR system, and calculating the relative displacements between them.

When comparing the strain values calculated from the finite element models, and considering the
initial shape and strain values measured directly from the ESGs, it was confirmed that the differences
largely occurred according to the calibration plane. The calibration plane of the cases with the largest
error was 30 X 30 (case 1) and 100 X 100 (case 6). In other words, since the shape of the models and
the calculated strain values are highly dependent on the calibration plane, it is important to select an
appropriate calibration plane to generate an accurate finite element model. The smallest difference
between the strain values measured from the ESGs and the strain value calculated from the finite
element model was in case 3 in the vertical direction and in case 4 in the horizontal direction.

The most important factor was the number of points, N, in the calibration plane. Points within
the calibration plane are denser, as the distance between the LiDAR system device and the target
structure is closer, but they become coarser and more sparse as the distance increases. The calibration
plane for case 3 was 50 x 50, and the average number of points, N, in the calibration plane to create an
interpolation point was 132. In case 4, the calibration plane was 60 x 60, and N was 190. In consideration
of this, to create a new calibration plane, as suggested in this article, it is important to consider that the
number of points in the calibration plane is about 132-190. However, if the performance of the LIDAR
system device is different than the one used in this research, it may be necessary to appropriately
increase or decrease the number of points in the calibration plane. In addition, to prevent occlusion
when the laser pulses of LiDAR are blocked for complex shapes, it is necessary to determine the
measurement positions where no occlusion area occurs and then measure simultaneously using
multiple LiDAR devices and overlap all acquired data from each device. In order to measure high-rise
buildings, it is advantageous to use high-performance LiDAR devices or unmanned aerial vehicle
(UAV) photogrammetry techniques.

By generating a 3D finite element model through this process, it was possible to confirm the strain
values for the whole of the structure. Of course, after confirming the locations of the maximum strains
occurring in the structure before the experiment, by attaching the ESGs to the determined locations,
the structural behavior could be analyzed by the strains measured from the ESGs. However, the more
complex structures, the greater the strain can occur at unexpected locations, not just at the points
measured by the ESGs. Therefore, measuring a structure using a LIDAR system enables the evaluation
of the displacement, strain, and stress distribution in the structure and provides the advantage of
evaluating the structural behavior at any point on the structure.

In conclusion, this research demonstrated reliable strain measurements by comparing and verifying
the strain values calculated from a LiDAR system and ESGs. Based on the verified finite element
model, not only the strains but also structural behavior monitoring behavior such as displacements
and stresses can be identified at any point on the structure. Accordingly, the validity and applicability
of the developed remote non-contact strain assessment method were established, and this study
confirmed that this method could be used for SHM and safety evaluation of complex, high-rise, or
inaccessible structures.



Sensors 2020, 20, 721 18 of 19

Author Contributions: Conceptualization—Y.M.L.; Data curation—H.-G.S.; Formal analysis, Investigation,
and Methodology—H.C.]J.; Resources—Y.M.L.; Validation, Visualization, and Writing—original draft—H.C.J.;
Writing—review & editing—Y.M.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Korea Institute of Energy Technology Evaluation and Planning (KETEP)
and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20194030202460) and
also funded by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT)
(NRF-2019R1A2C1090426).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sohn, H.; Farrar, C.R.; Hemez, EM.; Shunk, D.D.; Stinemates, D.W.; Nadler, B.R.; Czarnecki, J.J. A Review
of Structural Health Monitoring Literature: 1996-2001; Los Alamos Natl. Lab.: Los Alamos, NM, USA, 2003;
pp- 1-7.

2. Brownjohn, J.M.W. Structural health monitoring of civil infrastructure. Philos. Trans. R. Soc. A Math. Phys.
Eng. Sci. 2006, 365, 589-622. [CrossRef] [PubMed]

3. Qiu, Z; Wu, J,; Yuan, S. A wireless sensor network design and evaluation for large structural strain field
monitoring. Meas. Sci. Technol. 2011, 22, 75205. [CrossRef]

4. Lee, H.M,; Park, H.S. Gage-free stress estimation of a beam-like structure based on terrestrial laser scanning.
Comput. Civ. Infrastruct. Eng. 2011, 26, 647-658. [CrossRef]

5. Pasquale, M. Mechanical sensors and actuators. Sensors Actuators A Phys. 2003, 106, 142-148. [CrossRef]

6. Inaudi, D.; Vurpillot, S.; Casanova, N.; Kronenberg, P. Structural monitoring by curvature analysis using
interferometric fiber optic sensors. Smart Mater. Struct. 1998, 7, 199. [CrossRef]

7. Liu, Z; Mrad, N. Validation of strain gauges for structural health monitoring with Bayesian belief networks.
IEEE Sens. |. 2012, 13, 400-407. [CrossRef]

8.  Tennyson, R.C.; Mufti, A.A.; Rizkalla, S.; Tadros, G.; Benmokrane, B. Structural health monitoring of
innovative bridges in Canada with fiber optic sensors. Smart Mater. Struct. 2001, 10, 560. [CrossRef]

9. Park,].S,; Oh, BK,; Choi, S.W.; Park, H.S. Sensor-free stress estimation model for steel beam structures using
a motion capture system. IEEE Sens. J. 2016, 16, 2701-2713. [CrossRef]

10. Lou, K.-A,; Yaniv, G.; Hardtmann, D.; Ma, G.; Zimmermann, B.D. Fiber optic strain monitoring of bridge
column retrofitted with composite jacket under flexural loads. In Proceedings of the Smart Structures and
Materials 1995: Smart Systems for Bridges, Structures, and Highways, San Diego, CA, USA, 20 April 1995;
pp- 16-24.

11.  Murukeshan, V.M,; Chan, P.Y.; Ong, L.S.; Seah, L.K. Cure monitoring of smart composites using fiber Bragg
grating based embedded sensors. Sensors Actuators A Phys. 2000, 79, 153-161. [CrossRef]

12.  Campanella, C.E.; Cuccovillo, A.; Campanella, C.; Yurt, A.; Passaro, V. Fibre Bragg grating based strain
sensors: Review of technology and applications. Sensors 2018, 18, 3115. [CrossRef]

13.  Ham, Y.-S.; Chung, W.-]; Sea, J.-W. Comparison of laser technology & strain gauge application technology for
measurement of interaction force between wheel and rail. In Proceedings of the KSR Conference, Gyeongju,
Korea, 3-5 June 2004; pp. 219-223.

14. Boas, D.A.; Dunn, A K. Laser speckle contrast imaging in biomedical optics. . Biomed. Opt. 2010, 15, 11109.
[CrossRef] [PubMed]

15. Jo,H.C,;Kim,],; Lee, K,; Sohn, H.-G.; Lim, Y.M. Non-contact strain measurement for laterally loaded steel
plate using LiDAR point cloud displacement data. Sensors Actuators A Phys. 2018, 283, 362-374. [CrossRef]

16. Hong, C.; Ibaraki, S. Non-contact R-test with laser displacement sensors for error calibration of five-axis
machine tools. Precis. Eng. 2013, 37, 159-171. [CrossRef]

17.  Siringoringo, D.M.; Fujino, Y. Noncontact operational modal analysis of structural members by laser doppler
vibrometer. Comput. Civ. Infrastruct. Eng. 2009, 24, 249-265. [CrossRef]

18.  Ackermann, F. Airborne laser scanning-present status and future expectations. ISPRS J. Photogramm. Remote
Sens. 1999, 54, 64-67. [CrossRef]

19. Park, HS.; Lee, HM.; Adeli, H.; Lee, I. A new approach for health monitoring of structures: Terrestrial laser
scanning. Comput. Civ. Infrastruct. Eng. 2007, 22, 19-30. [CrossRef]

20. Yang, H.; Xu, X.; Neumann, I. The benefit of 3D laser scanning technology in the generation and calibration
of FEM models for health assessment of concrete structures. Sensors 2014, 14, 21889-21904. [CrossRef]


http://dx.doi.org/10.1098/rsta.2006.1925
http://www.ncbi.nlm.nih.gov/pubmed/17255053
http://dx.doi.org/10.1088/0957-0233/22/7/075205
http://dx.doi.org/10.1111/j.1467-8667.2011.00723.x
http://dx.doi.org/10.1016/S0924-4247(03)00153-5
http://dx.doi.org/10.1088/0964-1726/7/2/007
http://dx.doi.org/10.1109/JSEN.2012.2217954
http://dx.doi.org/10.1088/0964-1726/10/3/320
http://dx.doi.org/10.1109/JSEN.2016.2519033
http://dx.doi.org/10.1016/S0924-4247(99)00266-6
http://dx.doi.org/10.3390/s18093115
http://dx.doi.org/10.1117/1.3285504
http://www.ncbi.nlm.nih.gov/pubmed/20210435
http://dx.doi.org/10.1016/j.sna.2018.09.012
http://dx.doi.org/10.1016/j.precisioneng.2012.07.012
http://dx.doi.org/10.1111/j.1467-8667.2008.00585.x
http://dx.doi.org/10.1016/S0924-2716(99)00009-X
http://dx.doi.org/10.1111/j.1467-8667.2006.00466.x
http://dx.doi.org/10.3390/s141121889

Sensors 2020, 20, 721 19 of 19

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Arayici, Y. An approach for real world data modelling with the 3D terrestrial laser scanner for built
environment. Autom. Constr. 2007, 16, 816-829. [CrossRef]

Shan, J.; Toth, C.K. Topographic Laser Ranging and Scanning: Principles and Processing, 2nd ed.; CRC Press: Boca
Raton, FL, USA, 2018.

Wang, Y; Li, H.; Ning, X.; Shi, Z. A new interpolation method in mesh reconstruction from 3D point cloud.
In Proceedings of the 10th International Conference on Virtual Reality Continuum and Its Applications in
Industry, Hong Kong, China, 11-12 December 2011; pp. 235-242.

Cabaleiro, M.; Riveiro, B.; Conde, B.; Sanchez-Rodriguez, A. A case study of measurements of deformations
due to different loads in pieces less than 1 m from lidar data. Measurement 2020, 151, 107196. [CrossRef]
Leica Geosystems AG. Leica ScanStation 2 Product Specifications; Leica Geosystems AG.: Heerbrugg,
Switzerland, 2006.

Chow, J.; Lichti, D.; Glennie, C.; Hartzell, P. Improvements to and comparison of static terrestrial LIDAR
self-calibration methods. Sensors 2013, 13, 7224-7249. [CrossRef]

Habib, A.; Ghanma, M.; Morgan, M.; Al-Ruzougq, R. Photogrammetric and LiDAR data registration using
linear features. Photogramm. Eng. Remote Sens. 2005, 71, 699-707. [CrossRef]

Park, H.; Lim, S.; Trinder, J.; Turner, R. 3D surface reconstruction of terrestrial laser scanner data for forestry.
In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI,
USA, 25-30 July 2010; pp. 4366—4369.

Kim, J.;Jo, H.C,; Oh, S.; Lee, S.; Lee, K.; Lim, Y.M. Development of rapid construction technology for liquified
natural gas storage tanks using precast concrete panels as a permanent form. PCI J. 2019, 64, 62-79.

Jo, H.C,; Kim, ].H.; Lee, SK; Lee, KW.; Oh, S.H.; Lim, Y.M. Development of Construction Technique of
LNG Storage Tank Wall Using Precast Concrete Panels. IOP Conf. Ser. Mater. Sci. Eng. 2018, 431, 052010.
[CrossRef]

Simmons, ].R.; Dyson, P. Method of constructing a storage tank for cryogenic liquids. U.S. Patent No. 8603375B2,
10 December 2013.

Weitkamp, C. Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere; Springer Science & Business:
New York, NY, USA, 2006; Volume 102.

Castellazzi, G.; D’Altri, A.; Bitelli, G.; Selvaggi, I.; Lambertini, A. From laser scanning to finite element analysis
of complex buildings by using a semi-automatic procedure. Sensors 2015, 15, 18360-18380. [CrossRef]
Gordon, S.J.; Lichti, D.D. Modeling terrestrial laser scanner data for precise structural deformation
measurement. J. Surv. Eng. 2007, 133, 72-80. [CrossRef]

Schofield, W. Engineering Surveying: Theory and Examination Problems for Students, 5th ed.; Elsevier: Oxford,
UK, 2001.

Chang, P.C.; Flatau, A.; Liu, S.C. Health monitoring of civil infrastructure. Struct. Heal. Monit. 2003, 2,
257-267. [CrossRef]

Choi, S.; Kim, B.; Lee, H.; Kim, Y.; Park, H. A deformed shape monitoring model for building structures
based on a 2D laser scanner. Sensors 2013, 13, 6746—6758. [CrossRef]

Lee, I.-P,; Ahn, Y.; Csatho, B.; Schenk, T.; Shin, S.-W.; Yoon, T.-H. Generation of large-scale and high-resolution
DEMs over Antarctica through a LIDAR survey. In The Proceedings of the KSRS Conference; The Korean Society
of Remote Sensing: Seoul, Korea, 2003; pp. 1374-1376.

Wang, S.; Zhang, Z.; Ren, Y.; Zhu, C. UAV Photogrammetry and AFSA-Elman Neural Network in Slopes
Displacement Monitoring and Forecasting. KSCE J. Civ. Eng. 2020, 24, 19-29. [CrossRef]

Hibbitt, H.; Karlsson, B.; Sorensen, P. Abaqus Analysis User’s Manual Version 6.10; Dassault Systemes Simulia
Corp.: Providence, RI, USA, 2011.

American Petroleum Institute. Design and Construction of Large, Welded, Low-Pressure Storage Tanks;
API Standard 620; API Publishing Services: Washington, DC, USA, 2002.

@ © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1016/j.autcon.2007.02.008
http://dx.doi.org/10.1016/j.measurement.2019.107196
http://dx.doi.org/10.3390/s130607224
http://dx.doi.org/10.14358/PERS.71.6.699
http://dx.doi.org/10.1088/1757-899X/431/5/052010
http://dx.doi.org/10.3390/s150818360
http://dx.doi.org/10.1061/(ASCE)0733-9453(2007)133:2(72)
http://dx.doi.org/10.1177/1475921703036169
http://dx.doi.org/10.3390/s130506746
http://dx.doi.org/10.1007/s12205-020-1697-3
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	LiDAR System 
	Test Target 

	Methodology for Strain Evaluation 
	Acquisition of the 3D Point Cloud Data from LiDAR System 
	Finite Element Model Generation 

	Strain Evaluation 
	Test Setup 
	Results and Comparison 

	Conclusions 
	References

