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Abstract: Induced systemic resistance (ISR) is a mechanism involved in the plant defense response
against pathogens. Certain members of the Bacillus genus are able to promote the ISR by maintaining
a healthy photosynthetic apparatus, which prepares the plant for future stress situations. The goal
of the present study was to analyze the effect of the inoculation of Bacillus on the expression of
genes involved in plant responses to pathogens, as a part of the ISR, during the interaction of
Capsicum chinense infected with PepGMV. The effects of the inoculation of the Bacillus strains in
pepper plants infected with PepGMV were evaluated by observing the accumulation of viral DNA
and the visible symptoms of pepper plants during a time-course experiment in greenhouse and in
in vitro experiments. The relative expression of the defense genes CcNPR1, CcPR10, and CcCOI1
were also evaluated. The results showed that the plants inoculated with Bacillus subtilis K47, Bacillus
cereus K46, and Bacillus sp. M9 had a reduction in the PepGMV viral titer, and the symptoms in
these plants were less severe compared to the plants infected with PepGMV and non-inoculated
with Bacillus. Additionally, an increase in the transcript levels of CcNPR1, CcPR10, and CcCOI1
was observed in plants inoculated with Bacillus strains. Our results suggest that the inoculation
of Bacillus strains interferes with the viral replication, through the increase in the transcription of
pathogenesis-related genes, which is reflected in a lowered plant symptomatology and an improved
yield in the greenhouse, regardless of PepGMV infection status.

Keywords: NPR1; PR10; COI1; begomovirus; biological control; sustainable agriculture

1. Introduction

The disease management caused by viruses represents high costs and generates seri-
ous economic losses in agricultural productions worldwide [1]. The begomovirus genera,
family Geminiviridae, is the most diverse and widespread member of the family world-
wide, and it includes more than 400 reported species, including Pepper golden mosaic virus
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(PepGMV) [2–4]. Since its appearance and further identification, this virus has been studied
as it has caused severe economic losses, as well as because it is an excellent model for the
elucidation of the plant–begomoviruses interactions [5–7]. PepGMV causes adverse effects
in crops of the family Solanaceae, such as tobacco, tomato, and several species of pepper
(Capsicum sp.) [6,7]. Of these species, C. chinense L. has been widely used as a model for
food, biochemical, and phytopathological studies. Due to its economic importance, it has a
short crop cycle that allows us to identify, detect, and know the distribution of viruses that
affect solanaceous crops [8,9].

In Mexico, several studies have been performed in order to identify the mechanisms of
infection and the interaction between vector (Bemisia tabaci Gennadius B biotype), host and
PepGMV in order to propose strategies of management and control [8,10,11]. The manage-
ment of viral pathosystems is based on the prophylaxis that prevents virus dispersion and
on the plant tolerance in order to generate plants with resistance to viral infection through
different pathways [12]. The main strategy for the virus control depends on the genetic re-
sistance of the host, its interaction with the environment, and the efficiency of the synthetic
pesticides in vector control [13]. However, in PepGMV infections, the high multiplication
rates of B. tabaci have favored the development of resistant/tolerant populations in this
vector to the application of chemical products [14,15].

In recent years, many studies have focused on generating new strategies and ap-
proaches during disease management, and currently, commercial products based on mi-
croorganisms, such as beneficial fungi and plant growth-promoting rhizobacteria (PGPR),
are applied to agricultural crops [16–19]. Bacillus is a PGPR that promote growth, regulates
the plant physiology, and confers protection against pathogens due to many of its prop-
erties, such as the biosynthesis of auxins (IAA), production of siderophores, fixation and
solubilization of soil nutrients, and induced systemic resistance (ISR) via jasmonic acid
(JA), salicylic acid (SA), and ethylene (ET) signaling pathways [17,19–24]. The ISR elicited
by rhizobacteria is a mechanism that strengthens the plant defense system against attack
from pathogens. However, the induction of the ISR as a sustainable choice for viral disease
control has been little studied [25–27].

During the ISR, the genes and transcriptional factors of the SA and JA signaling path-
ways, dependent on the non-expressor of pathogenesis-related genes 1 (NPR1), participate
and involve the synthesis of pathogenesis-related proteins [24,28,29]. JA and ET transduce
extracellular stimuli recognized by cell receptors to a large number of target molecules,
which affect a fully coordinated and highly specific intracellular response to external stim-
uli [30]. Some reports indicate that the Coronatine Insensitive 1 (COI1) gene regulates the
JA signaling pathway that induces ISR [28,31]. Within the reported genes in these pathways,
the pathogenesis-related protein family 10 (PR10) [32] is included.

Recent studies have shown that the ISR improves photosynthesis and favors plants
under biotic stress conditions [33,34]. Specifically, our previous research has shown that
Bacillus strains enhance photosystem, and furthermore, promote ISR in C. chinense plants
infected with PepGMV, showing an increased CO2 assimilation, a decrease in the tran-
spiration rate, and increased water use efficiency, which caused less severe symptoms in
PepGMV-infected plants, as well as an increase in yield and fruit quality [35,36]. In this
sense, could Bacillus spp. increase the expression of the plant defense mechanisms at a
genetic level? The objective of the present study was to analyze the effect of the inoculation
of different strains of Bacillus on the expression of the genes involved in plant responses to
pathogens during its interaction with C. chinense infected with PepGMV.

2. Results
2.1. The Severity of the Infection Caused by PepGMV

The severity of the infection caused by PepGMV in pepper plants cultivated in con-
trolled conditions (growth chamber) was evaluated in a temporal course experiment at 0, 7,
14, and 21 dpi. The visible symptoms based on the severity scale (see Section 4.4 in Materials
and Methods) appeared as the viral infection progressed; the symptomatology developed
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as expected (Figure 1A). In addition, it was possible to observe mean differences in the
viral titer, which increased in plants with higher severity levels: 1 = 22.90 Relative DNA
Accumulation (RDA); 2 = 1558.56 RDA; 3 = 1844.55 RDA; 4 = 2161.02 RDA (Figure 2B).
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Figure 1. Symptom severity scale observed during infection caused by PepGMV in Capsicum chinense Jacq.
(A) Pepper plants showing symptoms associated with each severity level from a scale from 1 to 4, and
(B) relative DNA-PepGMV accumulation detected in pepper plants from each severity level of the scale.
Different letters represent mean differences (Tukey, α = 0.05). Error bars represent the mean± standard
error, N = 3 with 3 technical replicates.
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Figure 2. Induced systemic resistance by Bacillus spp. in plants of C. chinense infected with PepGMV.
(A) Mock at 7 dpi; (B) Plant infected with PepGMV at 7 dpi; (C) B. subtilis K47-inoculated plant at
7 dpi infected with PepGMV; (D) B. cereus K46-inoculated plant at 7 dpi infected with PepGMV;
(E) Bacillus spp. M9-inoculated plant at 7 dpi infected with PepGMV; (F) Mock at 14 dpi; (G) Plant
infected with PepGMV at 14 dpi; (H) B. subtilis K47-inoculated plant at 14 dpi infected with PepGMV;
(I) B. cereus K46-inoculated plant at 14 dpi infected with PepGMV; (J) Bacillus spp. M9-inoculated
plant at 14 dpi infected with PepGMV; (K) Mock at 21 dpi; (L) Plant infected with PepGMV at 21 dpi;
(M) B. subtilis K47-inoculated plant at 21 dpi infected with PepGMV; (N) B. cereus K46-inoculated at
21 dpi infected with PepGMV; (O) Bacillus spp. M9-inoculated plant at 21 dpi infected with PepGMV.
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2.2. Induced Systemic Resistance by Bacillus spp. in Capsicum chinense Jacq. against PepGMV

Symptoms in plants infected with PepGMV were first observed at 7 days post-
inoculation (dpi) (Figure 2B). The first symptoms were downward leaf curling and yellow
spots. In plants treated with B. subtilis K47, B. cereus K46, and Bacillus spp. M9, the symp-
toms of yellow spots, leaf curl, and dwarfism, characteristic of a Level 1 PepGMV severity,
were observed until 14 dpi (Figure 2H–J). Symptoms were attenuated in the treatment
with the B. subtilis K47-PepGMV (Figure 2H). PepGMV-infected plants showed severe
golden mosaics, leaf curling, and dwarfing symptoms (Figure 2G), which corresponded
to Level 4 on the severity scale. Mock-inoculated plants did not present any symptoms
(Figure 2A,F,K).

Viral symptoms were less severe in plants infected with PepGMV at 21 dpi (Level 2
severity, Figure 2L) compared to 14 dpi, with Level 4 severity (Figure 2G). The symptoms
in plants inoculated with the Bacillus strains were similar at 14 dpi with Level 1 severity
(Figure 2M,O), except for the plants inoculated with the M9 strain, where yellow mosaics
and leaf curling were observed, which corresponded to Level 2 severity (Figure 2O).
PepGMV was detected in all the plants inoculated with the virus, and was determined
by PCR amplification. Taken together, these results indicate that Bacillus spp. induces
resistance to PepGMV in pepper plants.

2.3. Accumulation of PepGMV in Capsicum chinense

The relative accumulation of viral DNA was quantified using the PepGMV-AC2 gene
as a qPCR target. Viral DNA was detected at 7 dpi in all treatments, with mean differences
among them. In PepGMV-infected plants, the viral DNA titer was up to 25 times lower
than the viral DNA detected in plants inoculated with the K47 strain, and 9 and 17 times
lower than in those treated with the K46 and M9 strains, respectively (Figure 3). In contrast,
a significant reduction in the viral accumulation was observed in plants inoculated with
the Bacillus spp. K47, K46, and M9 at 14 and 21 dpi. The viral accumulation of PepGMV
in plants without the inoculation of Bacillus spp. K47, K46, and M9 increased over time;
the highest values were observed at 7 dpi and then decreased at 14 and 21 dpi, with mean
differences among treatments (Figure 3). These results strongly suggest that the strains of
Bacillus spp. are involved in the reduction in the viral titer in PepGMV-infected plants.
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Figure 3. Viral DNA accumulation in pepper leaves inoculated with M9-PepGMV, K47-PepGMV,
K46-PepGMV, and PepGMV. Different letters represent mean differences (Tukey, α = 0.05). Error bars
represent the mean ± standard error; N = 3 with 3 technical replicates.

2.4. Effect of Plan Inoculation with Bacillus in Gene Expression of Genes Related with the ISR

After infection with PepGMV, the expression levels of the CcNPR1 gene increased
in pepper plants treated with Bacillus. A 3-fold increase was observed in leaves from
inoculated plants with B. cereus K46 when compared to the mock treatment at 2 h post
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inoculaction (hpi). The expression levels of the CcNPR1 gene were significantly higher
in plants inoculated with B. subtilis K47 at 24 hpi (Figure 4A), with a 19-fold increase
when compared to mock-treated plants. The expression levels of CcNPR1 decreased as the
PepGMV infection progressed in Bacillus-treated plants, although in PepGMV-inoculated
plants without Bacillus, a 9.5-fold increase in CcNPR1 was observed at 7 dpi when compared
to the mock treatment (Figure 4B). The aforementioned results suggest that treatments with
B. cereus K46 and B. subtilis K47 sharply increased CcNPR1 gene expression in pepper plants
infected with PepGMV, and the increase will depend on the strain used.
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Figure 4. Levels of transcripts of CcNPR1 (A,B), CcPR10 (C,D) and CcCOI1 (E,F) in Capsicum chinense Jacq
plants inoculated with PepGMV, B. subtilis K47-PepGMV, B. cereus K46-PepGMV, Bacillus spp. M9-PepGMV.
Different letters represent mean differences (Tukey, α = 0.05). Error bars represent the mean± standard
error; N = 3 with 3 technical replicates.
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Gene expression levels of CcPR10 gradually increased in plants treated with B. subtilis
K47, which showed a 10-fold increase and 190-fold increase at 8 and 12 hpi, respectively,
when compared to the mock treatments (Figure 4C). The CcPR10 gene expression levels
showed a 30-fold increase in plants treated with Bacillus spp. M9 at 21 dpi, when compared
to mock treatments (Figure 4D). These results indicate an involvement of the CcPR10 gene
during the early stages of the PepGMV infection in plants inoculated with B. subtilis K47.

CcCOI1 gene expression increased significantly at 24 hpi in leaves treated with
B. subtilis K47 and Bacillus spp. M9 when compared to mock-treated plants, with a 16-
and 57-fold increase (Figure 4E), respectively. CcCOI1 gene expression levels remained
significantly higher in pepper plants treated with Bacillus spp. M9, when compared to mock
treatments with a 16- and 27-fold increase at 24 hpi and 21 dpi, respectively (Figure 4F,G).
The above results indicate that treatment with Bacillus spp. markedly increased the expres-
sion of the CcCOI1 gene in pepper plants infected with PepGMV progressively at more
advanced stages of the disease.

2.5. Greenhouse Yield of Plants during the Bacillus spp.–C. chinensee–PepGMV Interaction

The agronomic traits evaluated at the greenhouse level were total yield, fruit number,
and fruit weight, which were quantified at 200 dpi. Plants without Bacillus inoculation
(H2O) and plants treated with the K47 strain had the highest yield across all analyzed
treatments (Tukey, α = 0.05) (Table 1). The results showed that the yields obtained in plants
treated with three strains of Bacillus and inoculated with the PepGMV had mean differences
compared to the plants treated with water and the plants inoculated with the virus and
without Bacillus spp.

Table 1. Average fruit weight (g), yield (g), and number of fruits in three harvests of habanero pepper
plants inoculated with different bacterial strains, B. subtilis K47, B. cereus K46, Bacillus spp. M9, and
infected with PepGMV. H2O = plants without viral infection and bacterial inoculation. Different
letters represent mean differences (Tukey-HSD, α = 0.05).

Treatment Mean Fruit Weight (g) Fruits per Plant Yield per Plant (g)

H2O 6.1 ± 0.05 b 52 ± 1.8 c 320.75 ± 6.51 c
PepGMV 5.3 ± 0.06 b 52 ± 1.4 d 274 ± 4.263 d

K47-PepGMV 7.9 ± 0.05 a 57 ± 1.5 a 451.75 ± 9.47 a
K46-PepGMV 7.6 ± 0.04 c 47 ± 1.3 b 358.75 ± 8.2 b
M9-PepGMV 7.7 ± 0.04 d 41 ± 1.1 b 314 ± 9.2 c,d

The plants treated with the K47 and M9 strains produced a total number of fruits and
had fruit weights statistically similar to control plants (H2O) (Table 1). All plants pretreated
with Bacillus spp. strains produced fruits of higher weight than plants inoculated only with
PepGMV (Table 1). Taken together, these results showed that seeds of C. chinense treated
with different strains of Bacillus spp. increased the habanero pepper greenhouse production
in plants infected with PepGMV (Table 1).

3. Discussion

In this study, our results indicate that the accumulation of PepGMV DNA increased
over time in plants without Bacillus. These results have been reported previously in
symptomatic pepper leaves infected with PepGMV, which showed a high accumulation of
viral DNA and RNA, due to high rates of replication and transcription [7]. In contrast, in
this study, we observed that in plants treated with Bacillus spp., the PepGMV viral titer and
the symptoms decreased over time. Different reports demonstrate that inoculation with
Bacillus spp. can reduce viral replication in infected plants [26,37]. Viral replication and
movement are fundamental processes in the cycle of the disease; if both are affected, the
result is a low viral concentration, and as a consequence, a decrease in symptoms [38]. Given
that the PepGMV infection is associated with mechanical wounding, a mock treatment was
prepared; during the early phases of the experiments, increases in the CcNPR1, CcPR10,
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and CcCOI1 was observed when compared to plants without mechanical damage. The
observed up-regulations of these genes suggest that they are responsive, to some extent, to
mechanical damage; this type of damage is caused by insect vectors (B. tabaci) during viral
transmission [10,15].

Some studies indicate that NPR1 is a plant gene, and it has been observed that its
expression is at low levels in healthy plants [32]. Moreover, the evidence demonstrates that
NPR1 is a fundamental component of the pathway of the SA-mediated signal transduction
pathway, inducing defense genes [16,39]. We observed that in plants inoculated with
B. cereus K46, CcNPR1 levels sharply increase at 2 hpi, and these increases are statistically
higher than in plants infected with PepGMV and not inoculated with Bacillus strains. It was
suggested that during ISR by Bacillus spp. in C. chinense, CcNPR1 is involved in the defense
response to PepGMV immediately after infection, and their behavior is specific to each
Bacillus strain. Although most strains of B. cereus are recognized as pathogenic microbes
for humans, there are some strains used in the bio-fertilization and biological control of
plant viruses [40–42]. In contrast, in plants infected with PepGMV and without Bacillus
inoculation, the highest expression of CcNPR1 was observed at 7 dpi. Similar studies report
that in C. annuum plants infected with Euphorbia mosaic virus-Yucatan Peninsula (EuMV-YP),
the expression of NPR1 increased at 7 dpi [32]. After the accumulation of SA in response
to a pathogen attack, NPR1 oligomer disassociates in the cytoplasm, and after this, the
monomer is translocated into the nucleus, and together with TGA transcription factors,
they induce the pathogenesis-related gene (PR’s) expression [38,39].

The PR protein family has a complex pattern of expression, and many members of this
family of genes are differentially expressed under conditions of environmental stress and
in response to pathogen attacks within the signaling pathway systemic acquired resistance
(SAR) [24,39]. In this study, the transcript levels of CcPR10 were highest at 8 hpi in plants
inoculated with B. subtilis K47, and its expression was statistically higher than in plants
without rhizobacteria. In this way, several studies have shown that the Tobacco mosaic virus
(TMV), Cucumber mosaic virus (CMV), Tobacco etch virus (TEV), and Tobacco vein mottling virus
(TVMV) trigger the activation of PR10, and this protein functions as a ribonuclease [43,44].
Furthermore, it was demonstrated that the inoculation of leaves in C. annuum L. ‘Bukwang’
with B. amyloliquefaciens 5B6 caused an increased in the expression of PR10 during CMV
infection [45]. Therefore, PR10 could not only be activated during the SAR, but it also
participates in the ISR in viral diseases.

It has been known that the COI1 gene is the central regulatory component of the
signaling pathway of SA/JA, and it is required for the defense responses of plants [28,39].
Recently, studies have reported that the C2 protein of geminivirus suppresses the defense
response signaling pathway mediated by jasmonates because this protein affects the func-
tioning of complex SCFCOI1 [46,47]. However, our data indicate that the CcCOI1 levels
of C. chinense plants treated with Bacillus spp. increased consistently for 7 dpi during the
disease caused by PepGMV. Similarly, in tobacco plants infected with TMV and inoculated
with Bacillus spp., the activation of the genes NtPR1, NtCOI1, and NtNPR1 has been ob-
served, generating a modulated ISR by Bacillus spp. [28]. These results suggest that despite
the disease caused by PepGMV, Bacillus spp. promotes ISR through increased levels of
transcripts of CcCOI1.

Multiple investigations on plant–rhizobacteria–pathogen interactions have demon-
strated the benefits in disease resistance and increased crop yield [48,49]. In this study, we
consistently observed that plants treated with B. subtilis K47 had less severity of symptoms
and better fruit quality (larger fruits) despite viral infection than healthy plants. In this
sense, in tomato plants treated with the B. amyloliquefaciens strain MBI600, resistance to
Tomato spotted wilt virus and Potato virus Y was increased through the salicylic acid path-
way [1]. Similarly, the application of B. velezensis CE 100 on strawberry plants controls
fungal diseases and improves yield [50].

Previously, our studies showed that B. subtilis K47 increased the photosynthetic param-
eters of the plant and prepared it for stress situations, such as viral diseases. Furthermore,
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this study reveals that inoculation with B. subtilis K47 increases the defense gene expression
of CcNPR1, CcPR10, and CcCOI1, decreases the viral titer and severity of symptoms, and
increases yield. It is evident that Bacillus activates ISR through a complex network of mech-
anisms, not only defending the plant from pathogen attacks, but also allow it to continue
producing fruit. These results could be interesting in evaluating their effect as complex bacteria
on the response to biotic and abiotic stresses during agricultural sustainable production.

4. Materials and Methods
4.1. Selection of Plant Material, Germination, and Growth Conditions

Seeds of C. chinense, accession H-224, were used [51]. The disinfection procedure
consisted of the immersion of C. chinense seeds in a solution of commercial bleach (sodium
hypoclorite, 2% v/v) for 15 min; the seeds were then rinsed three times with sterile distilled
water and air-dried in absorbent paper. The seed germination was performed in trays
with 200 cavities filled with sterile substrate (peat moss). The substrate was moistened
up to field capacity with distilled sterile water. The trays were placed in a growth room
(25 ± 2 ◦C, photoperiod of 16/8 light/dark), and they were watered every two days and
leaf-fertilized weekly at a dose of 1 gL−1 (UltraFol, Biochem systems, Querétaro, México.
After 18 days of germination, the seedlings were transferred into 500 mL Styrofoam cups,
filled with sterile substrate, and maintained in the same controlled conditions [36].

4.2. Bacillus sp. Inoculation

The strains of B. cereus K46, Bacillus spp. M9 (a mixture of B. subtilis and B. amyloliquefaciens),
and B. subtilis K47 were used [35,36]. All the Bacillus strains were gown in Luria-Bertoni Broth
(37 ◦C, 24 h) under agitation. The cell density was adjusted to 1 × 108 cells mL−1, 10 mL saline
solution (0.8% v/v), and the inoculation of seeds was performed as described previously [35].

4.3. PepGMV Infection by Bioballistics

Seedlings obtained from C. chinense seeds inoculated with the previously described
Bacillus strains were infected with PepGMV by bioballistics, when they had 3 to 4 true
leaves. A total of 1 µm gold particles (BioRad, Hercules, CA, USA) was mixed with 5 µg
of DNA from each hemidimer (A and B), as described by Carrillo-Tripp et al. [52]. The
treatments consisted of: (1) H2O (control); (2) Mock (control); (3) PepGMV; (4) B. subtilis
K47 + PepGMV; (5) B. cereus K46 + PepGMV; (6) Bacillus spp. M9 + PepGMV. The mock
treatment consisted of bombarding the seedlings with 1 µm gold particles without viral
DNA [52,53]. The treated plants were grown under controlled conditions (25 ± 2 ◦C,
photoperiod of 16/8 light/dark) for 28 days post-inoculation (dpi) with PepGMV [36].

4.4. Severity Scale in C. chinense Plants under Controlled Conditions

The symptoms caused in C. chinense seedlings bioballistically infected with PepGMV
were evaluated at 9 and 15 dpi in a growth room under controlled conditions, the scale of
the severity of the symptoms was modified from Samaniego-Gámez et al. [36], with the
following values: 1. Golden mosaics; 2. Golden mosaics and leave distortion; 3. Golden
mosaics, leave distortion, and chlorosis; 4. Golden mosaics, leave distortion, chlorosis, and
leaf curling. The severity analyses were assessed from ten observations per treatment [54].

4.5. Viral Titer Determination in C. chinense

Leaves of C. chinense from systemically infected plants with PepGMV were sampled
(1 g), and the total DNA was isolated with CTAB, as described by Doyle and Doyle [55]
without modifications. The detection reactions for the virus were performed within a
thermalcycler (TC-412, Techne, Bibby Scientific Ltd., Chicago, IL, USA), using a 100 ng of
total DNA and primers that targeted the AC2 gene (Table 2). The amplification conditions
consisted of: 1 cycle at 94 ◦C (5 min), 35 cycles at 94 ◦C (30 s), 58 ◦C (30 s), and 72 ◦C (30 s),
with an extension of 72 ◦C (10 min). The viral quantification was performed by quantitative
PCR (qPCR) in a StepOne Real-Time PCR system (Applied Biosystems, Life Technologies,
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San Francisco, CA, USA), using SYBRGreen qPCR kit Platinum SuperMix-UDG (11733046,
Invitrogen, Carlsbad, CA, USA). The real-time thermalcycler conditions were: 1 cycle at
94 ◦C (5 min), followed by 35 cycles at 94 ◦C (30 s), 58 ◦C (30 s), and 72 ◦C (30 s).

Table 2. Primers used for real-time PCR.

Gene Name Primer Sequences (5′-3′) Fragment (bp)

PepGMV AC2 [36]
GCCTTGTGGAGAGCTAATGC

213
TTAGCGCAGTTGATGTGGAG

β-tubulin [56]
TGTCCATCTGCTCTCTGTTG

204
CACCCCAAGCACAATAAGAC

CcNPR1
GAGGTGAGTTATGATGCTCTGG

141
AACCAAGAAAGCCACTGCTG

CcPR10
GCAGATGGAGGATGTGTTGG

147
AGAAGGATTGGTGAGGAGGTAG

CcCOI1
TGAAGAAGGTGCGGTTACAC

153
ACCAGCCGAAAATCAGACAG

A gene normalization analysis was performed in order to determine the most stable
housekeeping genes, such as Actin, 18S, Gliceraldehyde-3-phosphate-dehydrogensae, Ubiquitin,
and β-Tubulin, with the geNorm software (v.3.0, qBASE, Beavercreek, OH, USA) The
normalization showed that β-Tubulin was the most stable gene among the samples, which
agrees with previous reports in Capsicum [56,57]. The viral titter was determined with the
2−∆∆Ct method [56,58], normalized with β-tubulin (Table 2), and expressed as RDA.

4.6. Relative Expression of CcNPR1, CcPR10, and CcCOI1 by Real-Time PCR

To determine the transcript levels of CcNPR1, CcPR10, and CcCOI1 genes, leaf tissue
was collected during the time course of the disease, 0 h before infecting with the virus, 2,
4, 8, 12, and 24 h after infection with PepGMV, and 7, 14, and 21 days after infection with
PepGMV. Total RNA was isolated from leaves with the TRIZOL reagent, as described by
Chomczynski and Sacchi [44]. The isolated RNA was treated with TURBO DNase (2238,
Ambion, Life Technologies, Sunnyvale, CA, USA), and 2.5 µg was used for the cDNA
synthesis with the SuperScript III Reverse Transcriptase (18080-044, Invitrogen, Carlsbad,
CA, USA) and oligodT18 (18418-012, Invitrogen, Carlsbad, CA, USA). The transcript quan-
tification was performed in a StepOne Applied Biosystems Real-Time PCR system (Applied
Biosystems, Life Technologies, Carlsbad, CA, USA), using SYBRGreen qPCR kit Platinum
SuperMix-UDG (11733046, Invitrogen, Carlsbad, CA, USA) with 100 ng of total cDNA.
Transcript quantification conditions for CcNPR1: 1 cycle of 94 ◦C (5 min), 35 cycles of
95 ◦C (30 s), 55 ◦C (30 s), and 72 ◦C (30 s). Transcript quantification conditions for CcPR10:
1 cycle of 94 ◦C (5 min), 35 cycles of 95 ◦C (30 s), 58 ◦C (30 s), and 72 ◦C (30 s). Transcript
quantification conditions for CcCOI1: 1 cycle of 94 ◦C (5 min), 35 cycles of 95 ◦C (30 s), 58 ◦C
(30 s), 72 ◦C (30 s). The results were normalized with β-tubulin (Table 2) and expressed as
relative transcript levels with the 2−∆∆Ct method [56–58].

4.7. Evaluation of Agronomic Parameters

Plants at 28 dpi were transferred into black polyethylene bags (400 gauge) of 5 kg
capacity (35 cm diameter, 40 cm height) filled with sterile substrate, and maintained in a
greenhouse under controlled conditions (30 ± 2 ◦C, 65 ± 3% HR and 1100 mmol luminous
intensity). The agronomic parameters were performed as previously described [36].
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4.8. Experimental Design

A complete randomized design was used with 30 plants per treatment. For qPCR
experiments, three biological replicates per treatment were analyzed. PCR products were
cloned, sequenced, and compared via nucleotide BLAST in the NCBI. The detection of
mean differences in each treatment was examined by an ANOVA with the Tukey’s HSD
test at p ≤ 0.05 (Statistica, v.7.0.0, StatSoft Hamburg, Germany).

5. Conclusions

The seed inoculation with Bacillus promotes the ISR in C. chinense plants, which is
reflected in the reduction in the viral accumulation and the symptom severity, which
suggests that Bacillus could participate in the ISR through various mechanisms, such as the
inhibition of the viral replication and an increase in the transcription rate of defense genes.
Therefore, the ISR is a mechanism that could be implemented in disease management
programs in sustainable agriculture. Future research should be focused on the study of
the viral movement in Bacillus-treated plants and the transcriptional profile of the Bacillus–
plant–geminivirus interaction in order to elucidate the mechanisms involved at transcript
and the protein profile of this type of interaction.
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