Skip to main content

Advertisement

Log in

Dysregulation of TLR5 and TAM Ligands in the Alzheimer’s Brain as Contributors to Disease Progression

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The hypothesis that accumulation of beta-amyloid (Aβ) species in the brain represents a major event in Alzheimer’s disease (AD) pathogenesis still prevails; nevertheless, an array of additional pathological processes contributes to clinical presentation and disease progression. We sought to identify novel targets for AD within genes related to amyloid precursor protein (APP) processing, innate immune responses, and the catecholamine system. Through a series of bioinformatics analyses, we identified TLR5 and other genes involved in toll-like receptor (TLR) signaling as potential AD targets. It is believed that Aβ species induce activation of microglia and astrocytes in AD, with a negative impact on disease progression. The TAM (Tyro3, Axl, Mer) family of receptor tyrosine kinases plays pivotal roles in limiting inflammatory responses upon TLR stimulation, for which we further studied their implication in the TLR5 alterations observed in AD. We validated the up-regulation of TLR5 in the frontal cortex of moderate AD cases. In addition, we observed up-regulation of the TAM ligands protein S (PROS1), galectin-3 (LGALS3), and Tulp-1. Furthermore, we identified an association of the TAM ligand GAS6 with AD progression. In THP-1 cells, co-stimulation with Aβ and flagellin for 24 h induced up-regulation of TYRO3 and GAS6, which could be prevented by neutralization of TLR5. Our results underscore the role of TLR dysregulations in AD, suggesting the presence of an immunosuppressive response during moderate disease stages, and implicate TAM signaling in AD immune dysregulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Castello MA, Soriano S (2014) On the origin of Alzheimer’s disease. Trials and tribulations of the amyloid hypothesis. Ageing Res Rev 13:10–12

    Article  CAS  PubMed  Google Scholar 

  2. Bardou I, Kaercher RM, Brothers HM, Hopp SC, Royer S, Wenk GL (2014) Age and duration of inflammatory environment differentially affect the neuroimmune response and catecholaminergic neurons in the midbrain and brainstem. Neurobiol Aging 35(5):1065–1073

    Article  CAS  PubMed  Google Scholar 

  3. Najjar S, Pearlman DM, Alper K, Najjar A, Devinsky O (2013) Neuroinflammation and psychiatric illness. J Neuroinflammation 10:43

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Heneka MT, Kummer MP, Latz E (2014) Innate immune activation in neurodegenerative disease. Nat Rev Immunol 14(7):463–477

    Article  CAS  PubMed  Google Scholar 

  5. Sastre M, Klockgether T, Heneka MT (2006) Contribution of inflammatory processes to Alzheimer’s disease: molecular mechanisms. Int J Dev Neurosci 24(2–3):167–176

    Article  CAS  PubMed  Google Scholar 

  6. Doens D, Fernández PL (2014) Microglia receptors and their implications in the response to amyloid β for Alzheimer’s disease pathogenesis. J Neuroinflammation 11:48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Heneka MT, Golenbock DT, Latz E (2015) Innate immunity in Alzheimer’s disease. Nat Immunol 16(3):229–236

    Article  CAS  PubMed  Google Scholar 

  8. Chouraki V, Seshadri S (2014) Genetics of Alzheimer’s disease. Adv Genet 87:245–294

    Article  CAS  PubMed  Google Scholar 

  9. Gale SC, Gao L, Mikacenic C, Coyle SM, Rafaels N, Murray Dudenkov T, Madenspacher JH, Draper DW et al (2014) APOε4 is associated with enhanced in vivo innate immune responses in human subjects. J Allergy Clin Immunol 134(1):127–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C et al (2013) Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 45(12):1452–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. International Genomics of Alzheimer’s Disease Consortium (IGAP) (2015) Convergent genetic and expression data implicate immunity in Alzheimer’s disease. Alzheimers Dement 11(6):658–671

    Article  Google Scholar 

  12. Trudler D, Farfara D, Frenkel D (2010) Toll-like receptors expression and signaling in glia cells in neuro-amyloidogenic diseases: towards future therapeutic application. Mediators Inflamm 2010:497987. https://doi.org/10.1155/2010/497987

  13. Hanisch UK, Johnson TV, Kipnis J (2008) Toll-like receptors: roles in neuroprotection? Trends Neurosci 31(4):176–182

    Article  CAS  PubMed  Google Scholar 

  14. Rothlin CV, Ghosh S, Zuniga EI, Oldstone MB, Lemke G (2007) TAM receptors are pleiotropic inhibitors of the innate immune response. Cell 131(6):1124–1136

    Article  CAS  PubMed  Google Scholar 

  15. Lemke G (2013) Biology of the TAM receptors. Cold Spring Harb Perspect Biol 5(11):a009076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Linger RM, Keating AK, Earp HS, Graham DK (2008) TAM receptor tyrosine kinases: biologic functions, signaling, and potential therapeutic targeting in human cancer. Adv Cancer Res 100:35–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Brown JE, Krodel M, Pazos M, Lai C, Prieto AL (2012) Cross-phosphorylation, signaling and proliferative functions of the Tyro3 and Axl receptors in Rat2 cells. PLoS One 7(5):e36800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tsou WI, Nguyen KQ, Calarese DA, Garforth SJ, Antes AL, Smirnov SV et al (2014) Receptor tyrosine kinases, TYRO3, AXL and MER, demonstrate distinct patterns and complex regulation of ligand-induced activation. J Biol Chem 289(37):25750–25763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pierce AM, Keating AK (2014) TAM receptor tyrosine kinases: expression, disease and oncogenesis in the central nervous system. Brain Res 1542:206–220

    Article  CAS  PubMed  Google Scholar 

  20. Zheng Y, Wang Q, Xiao B, Lu Q, Wang Y, Wang X (2012) Involvement of receptor tyrosine kinase Tyro3 in amyloidogenic APP processing and β-amyloid deposition in Alzheimer’s disease models. PLoS One 7(6):e39035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li Q, Lu Q, Lu H, Tian S, Lu Q (2013) Systemic autoimmunity in TAM triple knockout mice causes inflammatory brain damage and cell death. PLoS One 8(6):e64812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ji R, Tian S, Lu HJ, Lu Q, Zheng Y, Wang X, Ding J, Li Q et al (2013) TAM receptors affect adult brain neurogenesis by negative regulation of microglial cell activation. J Immunol 191(12):6165–6177

    Article  CAS  PubMed  Google Scholar 

  23. Cribbs DH, Berchtold NC, Perreau V, Coleman PD, Rogers J, Tenner AJ, Corman CW (2012) Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study. J Neuroinflammation 9:179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Voyle N, Keohane A, Newhouse S, Lunnon K, Johnston C, Soininen H, Kloszewska I, Mecocci P et al (2016) A pathway based classification method for analyzing gene expression for Alzheimer’s disease diagnosis. J Alzheimers Dis 49(3):659–669

    Article  CAS  PubMed  Google Scholar 

  25. Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ (2009) Jalview version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25(9):1189–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tovchigrechko A, Vakser IA (2006) GRAMM-X public web server for protein-protein docking. Nucleic Acids Res 34(Web Server issue:W310–W314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18(15):2714–2723

    Article  CAS  PubMed  Google Scholar 

  28. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28(1):235–242. www.rcsb.org

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Arroyo DS, Soria JA, Gaviglio EA, Rodriguez-Galan MC, Iribarren P (2011) Toll-like receptors are key players in neurodegeneration. Int Immunopharmacol 11(10):1415–1421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Frank S, Copanaki E, Burbach GJ, Müller UC, Deller T (2009) Differential regulation of toll-like receptor mRNAs in amyloid plaque-associated brain tissue of aged APP23 transgenic mice. Neurosci Lett 453(1):41–44

    Article  CAS  PubMed  Google Scholar 

  31. Tahara K, Kim HD, Jin JJ, Maxwell JA, Li L, Fukuchi K (2006) Role of toll-like receptor signalling in Abeta uptake and clearance. Brain 129(Pt 11:3006–3019

    Article  PubMed  Google Scholar 

  32. Jin JJ, Kim HD, Maxwell JA, Li L, Fukuchi K (2008) Toll-like receptor 4-dependent upregulation of cytokines in a transgenic mouse model of Alzheimer’s disease. J Neuroinflammation 5:23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tang SC, Lathia JD, Selvaraj PK, Jo DG, Mughal MR, Cheng A, Siler DA, Markesbery WR et al (2008) Toll-like receptor-4 mediates neuronal apoptosis induced by amyloid beta-peptide and the membrane lipid peroxidation product 4-hydroxynonenal. Exp Neurol 213(1):114–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Landreth GE, Reed-Geaghan EG (2009) Toll-like receptors in Alzheimer’s disease. Curr Top Microbiol Immunol 336:137–153

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu S, Liu Y, Hao W, Wolf L, Kiliaan AJ, Penke B, Rube CE, Walter J et al (2012) TLR2 is a primary receptor for Alzheimer’s amyloid β peptide to trigger neuroinflammatory activation. J Immunol 188(3):1098–1107

    Article  CAS  PubMed  Google Scholar 

  36. Honjo K, van Reekum R, Verhoeff NP (2009) Alzheimer’s disease and infection: do infectious agents contribute to progression of Alzheimer’s disease? Alzheimers Dement 5(4):348–360

    Article  PubMed  Google Scholar 

  37. Miklossy J (2011) Alzheimer’s disease—a neurospirochetosis. Analysis of the evidence following Koch’s and Hill’s criteria. J Neuroinflammation 8:90

    Article  PubMed  PubMed Central  Google Scholar 

  38. Maheshwari P, Eslick GD (2015) Bacterial infection and Alzheimer’s disease: a meta-analysis. J Alzheimers Dis 43(3):957–966

    Article  PubMed  Google Scholar 

  39. Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S, Srinivasan S, Sitaraman SV, Knight R et al (2010) Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 328(5975):228–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Letiembre M, Liu Y, Walter S, Hao W, Pfander T, Wrede A, Schulz-Schaeffer W, Fassbender K (2009) Screening of innate immune receptors in neurodegenerative diseases: a similar pattern. Neurobiol Aging 30(5):759–768

    Article  CAS  PubMed  Google Scholar 

  41. Downer EJ (2013) Toll-like receptor signaling in Alzheimer’s disease progression. J Alzheimers Dis Parkinsonism S10:006. https://doi.org/10.4172/2161-0460.S10-006

  42. Chakrabarty P, Li A, Ladd TB, Strickland MR, Koller EJ, Burgess JD, Funk CC, Cruz PE et al (2018) TLR5 decoy receptor as a novel anti-amyloid therapeutic for Alzheimer’s disease. J Exp Med 215(9):2247–2264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lim SL, Rodriguez-Ortiz CJ, Kitazawa M (2015) Infection, systemic inflammation, and Alzheimer’s disease. Microbes Infect 17(8):549–556

    Article  CAS  PubMed  Google Scholar 

  44. Herrera-Rivero M, Heneka MT (2016) Expression of the TAM system in frontal cortex of Alzheimer’s disease in early stages. (Conference) Degeneration and Regeneration in Musculoskeletal and Neurodegenerative Diseases. Trelleborg, Sweden. https://doi.org/10.13140/RG.2.1.1826.8561

  45. Mattsson N, Insel P, Nosheny R, Zetterberg H, Trojanowski JQ, Shaw LM et al (2013) CSF protein biomarkers predicting longitudinal reduction of CSF β-amyloid42 in cognitively healthy elders. Transl Psychiatry 3:e293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kiddle SJ, Thambisetty M, Simmons A, Riddoch-Contreras J, Hye A, Westman E, Pike I, Ward M et al (2012) Plasma based markers of [11C] PiB-PET brain amyloid burden. PLoS One 7(9):e44260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sainaghi PP, Bellan M, Lombino F, Alciato F, Carecchio M, Galimberti D, Fenoglio C, Scarpini E et al (2017) Growth arrest specific 6 concentration is increased in the cerebrospinal fluid of patients with Alzheimer’s disease. J Alzheimers Dis 55(1):59–65

    Article  PubMed  Google Scholar 

Download references

Funding

Financial support for this study was obtained through the EU/EFPIA Innovative Medicines Initiative Joint Undertaking AETIONOMY (grant #115568) and the INMiND Project of the European Union to MTH.

Author information

Authors and Affiliations

Authors

Contributions

MHR: Conceived and designed the study, performed the bioinformatics analyses and lab experiments, analyzed and interpreted the data, and prepared the manuscript.

FS: Performed the cell culture experiments.

FB: Helped with the design of cell culture experiments.

MPK: Provided support and advice for the cell culture experiments, and contributed with critical revisions to the manuscript.

MTH: Conceived and designed the study, helped with manuscript preparation, and approved the final version of the manuscript.

Corresponding author

Correspondence to Michael T. Heneka.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(PDF 655 kb)

ESM 2

(PDF 276 kb)

ESM 3

(XLSX 53 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herrera-Rivero, M., Santarelli, F., Brosseron, F. et al. Dysregulation of TLR5 and TAM Ligands in the Alzheimer’s Brain as Contributors to Disease Progression. Mol Neurobiol 56, 6539–6550 (2019). https://doi.org/10.1007/s12035-019-1540-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-019-1540-3

Keywords

Navigation