Skip to main content
Log in

High Surface Area to Volume Ratio 3D Nanoporous Nb2O5 for Enhanced Humidity Sensing

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Sensors based on metal oxide platforms offer ease of device fabrication and simple sensing operation. As a metal oxide platform, highly nanoporous niobium oxide (Nb2O5) films consisting of unique three-dimensional vein-like structures can be efficiently used for developing humidity sensors. In this work, nanoporous Nb2O5 films (with different thicknesses of ∼ 1 μm, ∼ 2 μm, and ∼ 4 μm) were prepared by anodization of niobium foil for 30 min, 60 min, and 120 min. Electron, x-ray, atomic, and vibrational microscopies and spectroscopies were used for characterizing the morphological and structural properties of the Nb2O5 films. The analysis revealed that the nanoporous Nb2O5 exhibited hierarchical vein-like structures with orthorhombic crystalline orientation, and their surface roughness showed a proportional increase with the anodization duration. Metal–semiconductor–metal humidity sensors based on nanoporous Nb2O5 with platinum electrodes were tested in a humidity chamber under conditions of 40% to 90% relative humidity (RH) and different bias voltages. According to the obtained results, the ∼ 4-μm-thick nanoporous Nb2O5 presented the highest relative sensitivity of 216.5 under a bias voltage of 5 V, taking advantage of its extremely porous structure. These sensors provide high surface area to volume ratio, leading to highly effective affinity and interactions between surface-active sites and water molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.S. Ismail, M.H. Mamat, M.M. Yusoff, M.F. Malek, A.S. Zoolfakar, R.A. Rani, A.B. Suriani, A. Mohamed, M.K. Ahmad, and M. Rusop, Mater. Lett. 210, 258 (2018).

    Article  Google Scholar 

  2. C. Zhu, G. Yang, H. Li, D. Du, and Y. Lin, Anal. Chem. 87, 230 (2015).

    Article  Google Scholar 

  3. M. Anbia and S.E.M. Fard, J. Rare Earths 30, 38 (2012).

    Article  Google Scholar 

  4. M. Yin, F. Yang, Z. Wang, M. Zhu, M. Liu, X. Xu, and Z. Li, Materials 10, 535 (2017).

    Article  Google Scholar 

  5. N.D.M. Sin, S. Ahmad, M.F. Malek, M.H. Mamat, and M. Rusop, IOP Conf. Ser. Mater. Sci. Eng. 46, 012005 (2013).

    Article  Google Scholar 

  6. A.S. Ismail, M.H. Mamat, NDMd Sin, M.F. Malek, A.S. Zoolfakar, A.B. Suriani, A. Mohamed, M.K. Ahmad, and M. Rusop, Ceram. Int. 42, 9785 (2016).

    Article  Google Scholar 

  7. R.A. Rani, A.S. Zoolfakar, J.Z. Ou, M.R. Field, M. Austin, and K. Kalantar-zadeh, Sens. Actuators B 176, 149 (2013).

    Article  Google Scholar 

  8. M.M. Rahman, R. Abdul Rani, A.Z. Sadek, A.S. Zoolfakar, M.R. Field, T. Ramireddy, K. Kalantar-zadeh, and Y. Chen, J. Mater. Chem. A 1, 11019 (2013).

    Article  Google Scholar 

  9. J.Z. Ou, R.A. Rani, M.H. Ham, M.R. Field, Y. Zhang, H. Zheng, P. Reece, S. Zhuiykov, S. Sriram, M. Bhaskaran, R.B. Kaner, and K. Kalantar-Zadeh, ACS Nano 6, 4045 (2012).

    Article  Google Scholar 

  10. R. Fiz, F. Hernandez-Ramirez, T. Fischer, L. Lopez-Conesa, S. Estrade, F. Peiro, and S. Mathur, J. Phys. Chem. C 117, 10086 (2013).

    Article  Google Scholar 

  11. S. Kotresh, Y.T. Ravikiran, S.C. Vijaya Kumari, H.G. Raj Prakash, and S. Thomas, Adv. Mater. Lett. 6, 641 (2015).

    Article  Google Scholar 

  12. K.H.K. Katayama, Y. Takahashi, T. Akiba, and H. Yanagida, Sens. Actuators A 24, 55 (1990).

    Article  Google Scholar 

  13. X. Hu, X. Hu, Y. Yang, X. Wu, H.M. van Driel, and X. Gu, Proc. SPIE 3862, 551 (1999).

    Article  Google Scholar 

  14. B.C. Yadav and M. Singh, IEEE Sens. J. 10, 1759 (2010).

    Article  Google Scholar 

  15. R. Ab Kadir, R.A. Rani, M.M.Y.A. Alsaif, J.Z. Ou, W. Wlodarski, A.P. O’Mullane, and K. Kalantar-zadeh, ACS Appl. Mater. Interfaces 7, 4751 (2015).

    Article  Google Scholar 

  16. M. Balde, A. Vena, and B. Sorli, Sens. Actuators B Chem. 220, 829 (2015).

    Article  Google Scholar 

  17. R.A. Rani, A.S. Zoolfakar, A.P. O’Mullane, M.W. Austin, and K. Kalantar-Zadeh, J. Mater. Chem. A 2, 15683 (2014).

    Article  Google Scholar 

  18. R.A. Rani, A.S. Zoolfakar, J.Z. Ou, R. Ab Kadir, H. Nili, K. Latham, S. Sriram, M. Bhaskaran, S. Zhuiykov, R.B. Kaner, and K. Kalantar-Zadeh, ChemComm 49, 6349 (2013).

    Google Scholar 

  19. J.Z. Ou, S. Balendhran, M.R. Field, D.G. McCulloch, A.S. Zoolfakar, R.A. Rani, S. Zhuiykov, A.P. O’Mullane, and K. Kalantar-zadeh, Nanoscale 4, 5980 (2012).

    Article  Google Scholar 

  20. E.T. Drew, Y. Yang, J.A. Russo, M.L. Campbell, S.A. Rackley, J. Hudson, P. Schmuki, and D.C. Whitehead, Catal. Sci. Technol. 3, 2610 (2013).

    Article  Google Scholar 

  21. K. Lee, Y. Yang, M. Yang, and P. Schmuki, Chem. Eur. J. 18, 9521 (2012).

    Article  Google Scholar 

  22. K.M. Chahrour, N.M. Ahmed, M.R. Hashim, N.G. Elfadill, W. Maryam, M.A. Ahmad, and M. Bououdina, Superlattices Microstruct. 88, 489 (2015).

    Article  Google Scholar 

  23. Y. Wu, W. Zhao, W. Wang, L. Wang, and Q. Xue, Sci. Rep. 7, 1344 (2017).

    Article  Google Scholar 

  24. J. Liu, D. Xue, and K. Li, Nanoscale Res. Lett. 6, 138 (2011).

    Article  Google Scholar 

  25. A.M. Raba, J. Bautista-Ruíz, and M.R. Joya, Mater. Res. 19, 1381 (2016).

    Article  Google Scholar 

  26. Z. Su, L. Zhang, F. Jiang, and M. Hong, Prog. Nat. Sci. Mater. Int. 23, 294 (2013).

    Article  Google Scholar 

  27. S. Yang, Y. Aoki, and H. Habazaki, Appl. Surf. Sci. 257, 8190 (2011).

    Article  Google Scholar 

  28. H. Habazaki, Y. Oikawa, K. Fushimi, Y. Aoki, K. Shimizu, P. Skeldon, and G.E. Thompson, Electrochim. Acta 54, 946 (2009).

    Article  Google Scholar 

  29. T. Ohtsuka and T. Otsuki, Corros. Sci. 45, 1793 (2003).

    Article  Google Scholar 

  30. M. Gao, X. Wu, J. Liu, and W. Liu, Appl. Surf. Sci. 257, 6919 (2011).

    Article  Google Scholar 

  31. K. Maabong, Y. Hu, A. Braun, A.G.J. Machatine, and M. Diale, J. Mater. Res. 31, 1580 (2016).

    Article  Google Scholar 

  32. A. Pawlicka, M. Atik, and M.A. Aegerter, Thin Solid Films 301, 236 (1997).

    Article  Google Scholar 

  33. P. Amaravathy, S. Sowndarya, S. Sathyanarayanan, and N. Rajendran, Surf. Coat. Technol. 244, 131 (2014).

    Article  Google Scholar 

  34. X. Jin, C. Liu, J. Xu, Q. Wang, and D. Chen, RSC Adv. 4, 35546 (2014).

    Article  Google Scholar 

  35. D.C. Castro, R.P. Cavalcante, J. Jorge, M.A.U. Martines, L.C.S. Oliveira, G.A. Casagrande, and A. Machulek Jr., J. Braz. Chem. Soc. 27, 303 (2016).

    Google Scholar 

  36. S. Ge, H. Jia, H. Zhao, Z. Zheng, and L. Zhang, J. Mater. Chem. 20, 3052 (2010).

    Article  Google Scholar 

  37. Z. Chen and C. Lu, Sens. Lett. 3, 274 (2005).

    Article  Google Scholar 

  38. C.-Y. Lee and G.-B. Lee, Sens. Lett. 3, 1 (2005).

    Article  Google Scholar 

  39. T.A. Blank, L.P. Eksperiandova, and K.N. Belikov, Sens. Actuators B Chem. 228, 416 (2016).

    Article  Google Scholar 

  40. E. Traversa, Sens. Actuators B Chem. 23, 135 (1995).

    Article  Google Scholar 

  41. M.S. Mansor, M.H. Mamat, Z. Mohamad, and M. Rusop, Adv. Mater. Res. 667, 380 (2013).

    Article  Google Scholar 

  42. G. Hu, R. Zhou, R. Yu, L. Dong, C. Pan, and Z.L. Wang, Nano Res. 7, 1083 (2014).

    Article  Google Scholar 

  43. C.C. Yang and J.Y. Wang, IEEE Sens. J. 15, 5938 (2015).

    Article  Google Scholar 

  44. W. Xianfeng, D. Bin, Y. Jianyong, W. Moran, and P. Fukui, Nanotechnology 21, 055502 (2010).

    Article  Google Scholar 

  45. T. Li, L. Li, H. Sun, Y. Xu, X. Wang, H. Luo, Z. Liu, and T. Zhang, Adv. Sci. 4, 1600404 (2017).

    Article  Google Scholar 

  46. J. Zhao, Y. Liu, X. Li, G. Lu, L. You, X. Liang, F. Liu, T. Zhang, and Y. Du, Sens. Actuators B Chem. 181, 802 (2013).

    Article  Google Scholar 

  47. R. Posner, O. Ozcan, and G. Grundmeier, Design of Adhesive Joints under Humid Conditions, ed. L.F.M. da Silva and S. Chiaki (Berlin: Springer, 2013), pp. 21–52.

    Chapter  Google Scholar 

  48. H. Farahani, R. Wagiran, and M.N. Hamidon, Sensors (Basel, Switzerland) 14, 7881 (2014).

    Article  Google Scholar 

  49. D. Bauskar, B.B. Kale, and P. Patil, Sens. Actuators B Chem. 161, 396 (2012).

    Article  Google Scholar 

  50. V.K. Tomer, S. Duhan, P.V. Adhyapak, I.S. Mulla, and P. Gouma, J. Am. Ceram. Soc. 98, 741 (2015).

    Article  Google Scholar 

  51. S. Pokhrel and K.S. Nagaraja, Sens. Actuators B Chem. 92, 144 (2003).

    Article  Google Scholar 

  52. N. Rezlescu, C. Doroftei, E. Rezlescu, and P.D. Popa, Sens. Actuators B Chem. 115, 589 (2006).

    Article  Google Scholar 

  53. F. Tudorache, I. Petrila, S. Condurache-Bota, C. Constantinescu, and M. Praisler, Superlattices Microstruct. 77, 276 (2015).

    Article  Google Scholar 

  54. K.-S. Chou, T.-K. Lee, and F.-J. Liu, Sens. Actuators B Chem. 56, 106 (1999).

    Article  Google Scholar 

  55. G. Dubourg, A. Segkos, J. Katona, M. Radović, S. Savić, G. Niarchos, C. Tsamis, and V. Crnojević-Bengin, Sensors 17, 1854 (2017).

    Article  Google Scholar 

  56. R. Srivastava and B.C. Yadav, Adv. Mater. Lett. 3, 197 (2012).

    Article  Google Scholar 

  57. P.M. Faia, J. Libardi, I. Barbosa, E.S. Araujo, and H.P. de Oliveira, Adv. Mater. Sci. Eng. 2017, 9 (2017).

    Article  Google Scholar 

  58. E. Modaresinezhad and S. Darbari, Sens. Actuators B Chem. 237, 358 (2016).

    Article  Google Scholar 

  59. Y.-N. Guo, Z.-Y. Gao, X.-X. Wang, L. Sun, X. Yan, S.-Y. Yan, Y.-Z. Long, and W.-P. Han, RSC Adv. 8, 1078 (2018).

    Article  Google Scholar 

  60. M.S. Pawar, P.K. Bankar, M.A. More, and D.J. Late, RSC Adv. 5, 88796 (2015).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education Malaysia (MOE) under the Fundamental Research Grant Scheme [FRGS; Project Code: 600-IRMI/FRGS 5/3 (081/2017)]. Special thanks go to the Research Chair for Biomedical Applications of Nanomaterials, Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rozina Abdul Rani, Ahmad Sabirin Zoolfakar or Mohamad Rusop Mahmood.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdul Rani, R., Zoolfakar, A.S., Mohamad Ryeeshyam, M.F. et al. High Surface Area to Volume Ratio 3D Nanoporous Nb2O5 for Enhanced Humidity Sensing. J. Electron. Mater. 48, 3805–3815 (2019). https://doi.org/10.1007/s11664-019-07126-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07126-5

Keywords

Navigation