Skip to main content
Log in

Enhanced irreversible fixation of cesium by wetting and drying cycles in soil

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The retention of radioactive cesium (Cs) in soil is significantly related to the types of clay minerals, while the weathering process affects the irreversible adsorption sites in clay minerals. In this study, the effect of weathering (exposure duration of Cs and repeated wetting and drying cycles) on fractionation of Cs in soils was investigated using fractionation analysis by the sequential extraction. The residual fraction of Cs increased slowly with exposure time but increased rapidly by repeated wetting and drying cycles. XRD analysis shows that a 1.43 nm of interlayer size for vermiculite is shortened to 1.00 nm, i.e., similar to that of illite. The change implies the potential that the structure of expandable clay minerals is transformed to the non-expandable structure by weathering process after Cs retention. Based on the result, the residual fraction of Cs, most stable form of Cs in the soil, reached relatively rapidly to a maximum. However, the process is much slower kinetically in the field because the bench-scale weathering process used in this study is more aggressive. This study implies that Cs fractionations in the soil are converted into a more stable fraction by weathering processes in the soil. Therefore, Cs removal should be conducted as soon as possible after accidental release of Cs in an environmental side.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Askbrant, S., Melin, J., Sandalls, J., Rauret, G., Vallejo, R., Hinton, T., et al. (1996). Mobility of radionuclides in undisturbed and cultivated soils in Ukraine, Belarus and Russia six years after the Chernobyl fallout. Journal of Environmental Radioactivity, 31, 287–312.

    Article  CAS  Google Scholar 

  • Bouzidi, A., Souahi, F., & Hanini, S. (2010). Sorption behavior of cesium on Ain Oussera soil under different physicochemical conditions. Journal of Hazardous Materials, 184, 640–646.

    Article  CAS  Google Scholar 

  • Cambray, R. S., Cawse, P. A., Garland, J. A., Gibson, J. A. B., Johnson, P., Lewis, G. N. J., et al. (1987). Observations on Radioactivity from the Chernobyl Accident. Nuclear Energy-Journal of the British Nuclear Energy Society, 26, 77–101.

    CAS  Google Scholar 

  • Cornell, R. M. (1993). Adsorption of cesium on minerals—A review. Journal of Radioanalytical and Nuclear Chemistry-Articles, 171, 483–500.

    Article  CAS  Google Scholar 

  • Ding, D. H., Zhang, Z. Y., Lei, Z. F., Yang, Y. N., & Cai, T. M. (2016). Remediation of radiocesium-contaminated liquid waste, soil, and ash: A mini review since the Fukushima Daiichi Nuclear Power Plant accident. Environmental Science and Pollution Research, 23, 2249–2263.

    Article  CAS  Google Scholar 

  • Dubrova, Y. E., Nesterov, V. N., Krouchinsky, N. G., Ostapenko, V. A., Neumann, R., Neil, D. L., et al. (1996). Human minisatellite mutation rate after the Chernobyl accident. Nature, 380, 683–686.

    Article  CAS  Google Scholar 

  • Dumat, C., Quiquampoix, H., & Staunton, S. (2000). Adsorption of cesium by synthetic clay-organic matter complexes: Effect of the nature of organic polymers. Environmental Science and Technology, 34, 2985–2989.

    Article  CAS  Google Scholar 

  • Endo, S., Kimura, S., Takatsuji, T., Nanasawa, K., Imanaka, T., & Shizuma, K. (2012). Measurement of soil contamination by radionuclides due to the Fukushima Dai-ichi Nuclear Power Plant accident and associated estimated cumulative external dose estimation. Journal of Environmental Radioactivity, 111, 18–27.

    Article  CAS  Google Scholar 

  • Frost, R. L., Kristof, J., Horvath, E., & Kloprogge, J. T. (1999). Modification of kaolinite surfaces with cesium acetate at 25, 120, and 220 degrees C. Langmuir, 15, 8787–8794.

    Article  CAS  Google Scholar 

  • Fukushi, K., Sakai, H., Itono, T., Tamura, A., & Arai, S. (2014). Desorption of intrinsic cesium from smectite: Inhibitive effects of clay particle organization on cesium desorption. Environmental Science and Technology, 48, 10743–10749.

    Article  CAS  Google Scholar 

  • Fuller, A. J., Shaw, S., Ward, M. B., Haigh, S. J., Mosselmans, J. F. W., Peacock, C. L., et al. (2015). Caesium incorporation and retention in illite interlayers. Applied Clay Science, 108, 128–134.

    Article  CAS  Google Scholar 

  • Giannakopoulou, F., Haidouti, C., Chronopoulou, A., & Gasparatos, D. (2007). Sorption behavior of cesium on various soils under different pH levels. Journal of Hazardous Materials, 149, 553–556.

    Article  CAS  Google Scholar 

  • Gommers, A., Thiry, Y., Vandenhove, H., Vandecasteele, C. M., Smolders, E., & Merckx, R. (2000). Radiocesium uptake by one-year-old willows planted as short rotation coppice. Journal of Environmental Quality, 29, 1384–1390.

    Article  CAS  Google Scholar 

  • Hou, X. L., Fogh, C. L., Kucera, J., Andersson, K. G., Dahlgaard, H., & Nielsen, S. P. (2003). Iodine-129 and Caesium-137 in Chernobyl contaminated soil and their chemical fractionation. Science of the Total Environment, 308, 97–109.

    Article  CAS  Google Scholar 

  • Huo, X. X., Wu, L. M., Liao, L. B., Xia, Z. G., & Wang, L. J. (2012). The effect of interlayer cations on the expansion of vermiculite. Powder Technology, 224, 241–246.

    Article  CAS  Google Scholar 

  • Kang, D. J., Seo, Y. J., Saito, T., Suzuki, H., & Ishii, Y. (2012). Uptake and translocation of cesium-133 in napiergrass (Pennisetum purpureum Schum.) under hydroponic conditions. Ecotoxicology and Environmental Safety, 82, 122–126.

    Article  CAS  Google Scholar 

  • Kato, H., Onda, Y., & Teramage, M. (2012). Depth distribution of Cs-137, Cs-134, and I-131 in soil profile after Fukushima Dai-ichi Nuclear Power Plant Accident. Journal of Environmental Radioactivity, 111, 59–64.

    Article  CAS  Google Scholar 

  • Kim, E. J., Jeon, E. K., & Baek, K. (2016). Role of reducing agent in extraction of arsenic and heavy metals from soils by use of EDTA. Chemosphere, 152, 274–283.

    Article  CAS  Google Scholar 

  • Kim, G. N., Kim, S. S., Park, U. R., & Moon, J. K. (2015). Decontamination of soil contaminated with cesium using electrokinetic–electrodialytic method. Electrochimica Acta, 181, 233–237.

    Article  CAS  Google Scholar 

  • Kim, B. H., Park, C. W., Yang, H. M., Seo, B. K., Lee, B. S., Lee, K. W., et al. (2017). Comparison of Cs desorption from hydrobiotite by cationic polyelectrolyte and cationic surfactant. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 522, 382–388.

    CAS  Google Scholar 

  • Kogure, T., Morimoto, K., Tamura, K., Sato, H., & Yamagishi, A. (2012). XRD and HRTEM evidence for fixation of cesium ions in vermiculite clay. Chemistry Letters, 41, 380–382.

    Article  CAS  Google Scholar 

  • Lasat, M. M., Norvell, W. A., & Kochian, L. V. (1997). Potential for phytoextraction of Cs-137 from a contaminated soil. Plant and Soil, 195, 99–106.

    Article  CAS  Google Scholar 

  • Lee, J., Park, S. M., Jeon, E. K., & Baek, K. (2017). Selective and irreversible adsorption mechanism of cesium on illite. Applied Geochemistry, 85, 188–193.

    Article  CAS  Google Scholar 

  • Llano, A. Y., Benitez, A. H., & Gutierrez, M. G. (1998). Cesium sorption studies on Spanish clay materials. Radiochimica Acta, 82, 275–278.

    Google Scholar 

  • Maes, E., Vielvoye, L., Stone, W., & Delvaux, B. (1999). Fixation of radiocaesium traces in a weathering sequence mica →  vermiculite → hydroxy interlayered vermiculite. European Journal of Soil Science, 50, 107–115.

    Article  CAS  Google Scholar 

  • Mallampati, S. R., Mitoma, Y., Okuda, T., Sakita, S., & Kakeda, M. (2012). High immobilization of soil cesium using ball milling with nano-metallic Ca/CaO/NaH2PO4: Implications for the remediation of radioactive soils. Environmental Chemistry Letters, 10, 201–207.

    Article  CAS  Google Scholar 

  • McKinley, J. P., Zachara, J. M., Heald, S. M., Dohnalkova, A., Newville, M. G., & Sutton, S. R. (2004). Microscale distribution of cesium sorbed to biotite and muscovite. Environmental Science and Technology, 38, 1017–1023.

    Article  CAS  Google Scholar 

  • Motokawa, R., Endo, H., Yokoyama, S., Nishitsuji, S., Kobayashi, T., Suzuki, S., et al. (2014). Collective structural changes in vermiculite clay suspensions induced by cesium ions. Scientific Reports, 4, 4608–4616.

    Google Scholar 

  • Mukai, H., Hirose, A., Motai, S., Kikuchi, R., Tanoi, K., Nakanishi, T. M., et al. (2016). Cesium adsorption/desorption behavior of clay minerals considering actual contamination conditions in Fukushima. Scientific Reports, 6, 21543.

    Article  CAS  Google Scholar 

  • Nakao, A., Thiry, Y., Funakawa, S., & Kosaki, T. (2008). Characterization of the frayed edge site of micaceous minerals in soil clays influenced by different pedogenetic conditions in Japan and northern Thailand. Soil Science and Plant Nutrition, 54, 479–489.

    Article  CAS  Google Scholar 

  • Nishijima, S., Akiyama, Y., Mishima, F., Watanabe, T., Yamasaki, T., Nagaya, S., et al. (2013). Study on decontamination of radioactive cesium from soil by HTS magnetic separation system. IEEE Transactions on Applied Superconductivity, 23, 3700405.

    Article  CAS  Google Scholar 

  • Park, C. W., Kim, B. H., Yang, H. M., Seo, B. K., & Lee, K. W. (2017a). Enhanced desorption of Cs from clays by a polymeric cation-exchange agent. Journal of Hazardous Materials, 327, 127–134.

    Article  CAS  Google Scholar 

  • Park, S. M., Lee, J., Kim, Y. H., Lee, J. S., & Baek, K. (2017b). Influence of physicochemical properties on cesium adsorption onto soil. Journal of Soil Groundwater Environment, 22, 27–32.

    Article  Google Scholar 

  • Rauret, G., Lopez-Sanchez, J. F., Sahuquillo, A., Rubio, R., Davidson, C., Ure, A., et al. (1999). Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. Journal of Environmental Monitoring, 1, 57–61.

    Article  CAS  Google Scholar 

  • Saito, T., Makino, H., & Tanaka, S. (2014). Geochemical and grain-size distribution of radioactive and stable cesium in Fukushima soils: Implications for their long-term behavior. Journal of Environmental Radioactivity, 138, 11–18.

    Article  CAS  Google Scholar 

  • Saito, K., Tanihata, I., Fujiwara, M., Saito, T., Shimoura, S., Otsuka, T., et al. (2015). Detailed deposition density maps constructed by large-scale soil sampling for gamma-ray emitting radioactive nuclides from the Fukushima Dai-ichi Nuclear Power Plant accident. Journal of Environmental Radioactivity, 139, 308–319.

    Article  CAS  Google Scholar 

  • Sawhney, B. L. (1970). Potassium and cesium ion selectivity in relation to clay mineral structure. Clays and Clay Minerals, 18, 47–52.

    Article  CAS  Google Scholar 

  • Sawhney, B. L. (1972). Selective sorption and fixation of cations by clay-minerals—review. Clays and Clay Minerals, 20, 93–100.

    Article  CAS  Google Scholar 

  • Shaw, G., & Bell, J. N. B. (1991). Competitive effects of potassium and ammonium on cesium uptake kinetics in wheat. Journal of Environmental Radioactivity, 13, 283–296.

    Article  CAS  Google Scholar 

  • Singh, S., Eapen, S., Thorat, V., Kaushik, C. P., Raj, K., & D’Souza, S. F. (2008). Phytoremediation of (137)cesium and (90)strontium from solutions and low-level nuclear waste by Vetiveria zizanoides. Ecotoxicology and Environmental Safety, 69, 306–311.

    Article  CAS  Google Scholar 

  • Singh, S., Thorat, V., Kaushik, C. P., Raj, K., Eapen, S., & D’Souza, S. F. (2009). Potential of Chromolaena odorata for phytoremediation of Cs-137 from solution and low level nuclear waste. Journal of Hazardous Materials, 162, 743–745.

    Article  CAS  Google Scholar 

  • Staunton, S., Dumat, C., & Zsolnay, A. (2002). Possible role of organic matter in radiocaesium adsorption in soils. Journal of Environmental Radioactivity, 58, 163–173.

    Article  CAS  Google Scholar 

  • Tanaka, K., Takahashi, Y., Sakaguchi, A., Umeo, M., Hayakawa, S., Tanida, H., et al. (2012). Vertical profiles of Iodine-131 and Cesium-137 in soils in Fukushima Prefecture related to the Fukushima Daiichi nuclear power station accident. Geochemical Journal, 46, 73–76.

    Article  CAS  Google Scholar 

  • Tsukada, H., Hasegawa, H., Hisamatsu, S., & Yamasaki, S. (2002). Transfer of Cs-137 and stable Cs from paddy soil to polished rice in Aomori, Japan. Journal of Environmental Radioactivity, 59, 351–363.

    Article  CAS  Google Scholar 

  • Wang, T. H., Li, M. H., Wei, Y. Y., & Teng, S. P. (2010). Desorption of cesium from granite under various aqueous conditions. Applied Radiation and Isotopes, 68, 2140–2146.

    Article  CAS  Google Scholar 

  • Wendling, L. A., Harsh, J. B., Ward, T. E., Palmer, C. D., Hamilton, M. A., Boyle, J. S., et al. (2005). Cesium desorption from lllite as affected by exudates from rhizosphere bacteria. Environmental Science and Technology, 39, 4505–4512.

    Article  CAS  Google Scholar 

  • Willms, C., Li, Z. H., Allen, L., & Evans, C. V. (2004). Desorption of cesium from kaolinite and illite using alkylammonium salts. Applied Clay Science, 25, 125–133.

    Article  CAS  Google Scholar 

  • Yamasaki, S., Imoto, J., Furuki, G., Ochiai, A., Ohnuki, T., Sueki, K., et al. (2016). Radioactive Cs in the estuary sediments near Fukushima Daiichi Nuclear Power Plant. Science of the Total Environment, 551, 155–162.

    Article  CAS  Google Scholar 

  • Yasunari, T. J., Stohl, A., Hayano, R. S., Burkhart, J. F., Eckhardt, S., & Yasunari, T. (2011). Cesium-137 deposition and contamination of Japanese soils due to the Fukushima nuclear accident. Proceedings of the National Academy of Sciences of the United States of America, 108, 19530–19534.

    Article  Google Scholar 

  • Yin, X., Wang, X. P., Wu, H., Ohnuki, T., & Takeshita, K. (2017). Enhanced desorption of cesium from collapsed interlayer regions in vermiculite by hydrothermal treatment with divalent cations. Journal of Hazardous Materials, 326, 47–53.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by GAIA Project funded by KEITI (Grant No. 2015000550008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kitae Baek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, SM., Yang, JS., Tsang, D.C.W. et al. Enhanced irreversible fixation of cesium by wetting and drying cycles in soil. Environ Geochem Health 41, 149–157 (2019). https://doi.org/10.1007/s10653-018-0174-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-018-0174-0

Keywords

Navigation