Skip to main content
Log in

Genetik und Epigenetik der Adipositas

Genetic and epigenetic mechanisms in obesity

  • Leitthema
  • Published:
Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz Aims and scope

Zusammenfassung

Adipositas ist ein ernst zu nehmendes medizinisches Problem. Rund 60 % der deutschen Erwachsenen sind übergewichtig, ca. 20 % adipös. Der erbliche Anteil an der Varianz des Körpergewichtes ist hoch. Dennoch konnten molekulargenetische Studien bisher nur einen kleinen Teil der interindividuellen Variabilität beim Body-Mass-Index (BMI) erklären. Nur sehr selten finden sich monogene Formen der Adipositas, bei denen der Wegfall eines einzigen Genprodukts zu extremer Adipositas führt. Die Streubreite des Körpergewichtes wird häufig durch ein komplexes Zusammenspiel vieler Genvarianten erklärt (polygene Adipositas). Jede einzelne Variante trägt dabei nur wenig zum Körpergewicht bei. Bisher wurden in groß angelegten Studien an Personen europäischer Herkunft genomweit 32 genetische Varianten (sog. Einzelnukleotidaustausche oder SNPs, single nucleotide polymorphisms) identifiziert, die mit Adipositas assoziiert sind. Insgesamt können diese polygenen Adipositasvarianten aber nur ca. 5 % der Varianz beim BMI erklären. Neben den DNA-Varianten spielen auch epigenetische Mechanismen bei der Gewichtsregulation eine Rolle. Im Laufe des Lebens kann sich die epigenetische Ausstattung eines Menschen verändern. Sie bildet eine Schnittstelle zwischen genetischen und umweltbedingten Einflüssen. Es ist vorstellbar, dass zukünftig epigenetische Marker, neben genetischen Markern, dafür eingesetzt werden können, eine Prädisposition für Adipositas zu erkennen und die Therapie zu verbessern.

Abstract

Obesity is a relevant medical problem. Around 60 % of German adults are overweight, 20 % are obese. The hereditary contribution to the variance of body weight is high. Nevertheless, molecular genetic studies have as yet explained only a small part of the inter-individual variability in the body mass index (BMI). Monogenic forms of obesity, in which loss of a single gene product leads to extreme obesity, are very infrequent. Variance of body weight is commonly explained by a complex interplay of many genetic variants (polygenic obesity). Each variant contributes only a small amount to the body weight. Currently, the largest published analysis of individuals of European origin identified 32 genetic variations (single nucleotide polymorphisms, SNPs) associated with BMI (obesity). Overall, these polygenic obesity variants only explain about 5 % of the variance of the BMI. In addition to the DNA variants epigenetic factors seem to also play a role in body weight regulation. These epigenetic marks can change in the course of life. They might provide an interface between genetic and environmental influences. It is conceivable that in future it will be possible to use epigenetic and genetic markers to detect a predisposition for obesity and to improve prevention and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Mensink GB, Schienkiewitz A, Haftenberger M, Lampert T, Ziese T, Scheidt-Nave C (2013) Overweight and obesity in Germany: results of the German Health Interview and Examination Survey for Adults (DEGS 1)]. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 56:786–794

    Article  CAS  Google Scholar 

  2. Hebebrand J, Hinney A, Knoll N, Volckmar AL, Scherag A (2013) Molecular genetic aspects of weight regulation. Dtsch Arztebl Int 110:338–344

    PubMed Central  PubMed  Google Scholar 

  3. Moss A, Klenk J, Simon K, Thaiss H, Reinehr T, Wabitsch M (2012) Declining prevalence rates for overweight and obesity in German children starting school. Eur J Pediatr 171:289–299

    Article  PubMed  Google Scholar 

  4. Blüher S, Sergeyev E, Moser A et al (2011) Syndromale Adipositas. Adipositas – Ursachen, Folgeerkrankungen, Therapie 5:195–200

    Google Scholar 

  5. Ramachandrappa S, Farooqi IS (2011) Genetic approaches to understanding human obesity. J Clin Invest 121:2080–2086

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Hinney A, Volckmar AL, Knoll N (2013) Melanocortin-4 receptor in energy homeostasis and obesity pathogenesis. Prog Mol Biol Transl Sci 114:147–191

    Article  CAS  PubMed  Google Scholar 

  7. Hinney A, Hohmann S, Geller F et al (2003) Melanocortin-4 receptor gene: case–control study and transmission disequilibrium test confirm that functionally relevant mutations are compatible with a major gene effect for extreme obesity. J Clin Endocrinol Metab 88:4258–4267

    Article  CAS  PubMed  Google Scholar 

  8. Dempfle A, Hinney A, Heinzel-Gutenbrunner M et al (2004) Large quantitative effect of melanocortin-4 receptor gene mutations on body mass index. J Med Genet 41:795–800

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Speliotes EK, Willer CJ, Berndt SI et al (2010) Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet 42:937–948

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Berndt SI, Gustafsson S, Mägi R et al (2013) Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture. Nat Genet 45:501–512

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Rzehak P, Scherag A, Grallert H et al (2010) Associations between BMI and the FTO gene are age dependent: results from the GINI and LISA birth cohort studies up to age 6 years. Obes Facts 3:173–180

    Article  PubMed  Google Scholar 

  12. Hakanen M, Raitakari OT, Lehtimäki T et al (2009) FTO genotype is associated with body mass index after the age of seven years but not with energy intake or leisure-time physical activity. J Clin Endocrinol Metab 94:1281–1287

    Article  CAS  PubMed  Google Scholar 

  13. Wardle J, Carnell S, Haworth CM, Farooqi IS, O'Rahilly S, Plomin R (2008) Obesity associated genetic variation in FTO is associated with diminished satiety. J Clin Endocrinol Metab 93:3640–3643

    Article  CAS  PubMed  Google Scholar 

  14. Speakman JR, Rance KA, Johnstone AM (2008) Polymorphisms of the FTO gene are associated with variation in energy intake, but not energy expenditure. Obesity (Silver Spring) 16:1961–1965

    Article  CAS  Google Scholar 

  15. Cecil JE, Tavendale R, Watt P, Hetherington MM, Palmer CN (2008) An obesity-associated FTO gene variant and increased energy intake in children. N Engl J Med 359:2558–2566

    Article  CAS  PubMed  Google Scholar 

  16. Park SL, Cheng I, Pendergrass SA, Kucharska-Newton AM et al (2013) Association of the FTO obesity risk variant rs8050136 with percentage of energy intake from fat in multiple racial/ethnic populations: the PAGE study. Am J Epidemiol 178:780–790

    Article  PubMed Central  PubMed  Google Scholar 

  17. Fischer J, Koch L, Emmerling C et al (2009) Inactivation of the Fto gene protects from obesity. Nature 458:894–898

    Article  CAS  PubMed  Google Scholar 

  18. Church C, Lee S, Bagg EA et al (2009) A mouse model for the metabolic effects of the human fat mass and obesity associated FTO gene. PLoS Genet 5:e1000599

    Article  PubMed Central  PubMed  Google Scholar 

  19. Church C, Moir L, McMurray F et al (2010) Overexpression of Fto leads to increased food intake and results in obesity. Nat Genet 42:1086–1092

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Müller TD, Tschöp MH, Hofmann S (2013) Emerging function of fat mass and obesity-associated protein (fto). PLoS Genet 9:e1003223

    Article  PubMed Central  PubMed  Google Scholar 

  21. Berulava T, Horsthemke B (2010) The obesity-associated SNPs in intron 1 of the FTO gene affect primary transcript levels. Eur J Hum Genet 18:1054–1056

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Sanchez-Pulido L, Andrade-Navarro MA (2007) The FTO (fat mass and obesity associated) gene codes for a novel member of the non-heme dioxygenase superfamily. BMC Biochem 8:23

    Article  PubMed Central  PubMed  Google Scholar 

  23. Wahlen K, Sjölin E, Hoffstedt J (2008) The common rs9939609 gene variant of the fat mass- and obesity-associated gene FTO is related to fat cell lipolysis. J Lipid Res 49:607–611

    Article  PubMed  Google Scholar 

  24. Jia G, Yang CG, Yang S, Jian X, Yi C, Zhou Z, He C (2008) Oxidative demethylation of 3-methylthymine and 3-methyluracil in single-stranded DNA and RNA by mouse and human FTO. FEBS Lett 582:3313–3319

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Smemo S, Tena JJ, Kim KH et al (2014) Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature 507:371–375

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Yang J, Manolio TA, Pasquale LR et al (2011) Genome partitioning of genetic variation for complex traits using common SNPs. Nat Genet 43:519–525

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Jarick I, Vogel CI, Scherag S et al (2011) Novel common copy number variation for early onset extreme obesity on chromosome 11q11 identified by a genome-wide analysis. Hum Mol Genet 20:840–852

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Jacquemont S, Reymond A, Zufferey F et al (2011) Mirror extreme BMI phenotypes associated with gene dosage at the chromosome 16p11.2 locus. Nature 478:97–102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Slomko H, Heo HJ, Einstein FH (2012) Minireview: epigenetics of obesity and diabetes in humans. Endocrinology 153:1025–1030

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Drummond EM, Gibney ER (2013) Epigenetic regulation in obesity. Curr Opin Clin Nutr Metab Care 16:392–397

    CAS  PubMed  Google Scholar 

  31. Kuehnen P, Mischke M, Wiegand S et al (2012) An Alu element-associated hypermethylation variant of the POMC gene is associated with childhood obesity. PLoS Genet 8:e1002543

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Hinney A, Holzapfel C (2012) Genetische Faktoren bei Adipositas. Molekulargenetische Befunde und deren Bedeutung. Adipositas 6:236–242

    Google Scholar 

  33. Dick KJ, Nelson CP, Tsaprouni L et al (2014) DNA methylation and body-mass index: a genome-wide analysis. Lancet 383:1990–1998

    Article  CAS  PubMed  Google Scholar 

  34. Loos RJ (2012) Genetic determinants of common obesity and their value in prediction. Best Pract Res Clin Endocrinol Metab 26:211–226

    Article  CAS  PubMed  Google Scholar 

Download references

Danksagung

Wir danken den Teilnehmern an den molekulargenetischen Studien. Wir danken dem BMBF (01GS0820), der DFG (HI865/2-1), dem ELAN-Programm, gefördert durch die Else-Kröner-Fresenius-Stiftung, dem IFORES-Programm der Universität Duisburg-Essen und dem FoRUM Programm der Universität Bochum für die Unterstützung bei der Erstellung dieser Arbeit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hinney.

Ethics declarations

Interessenkonflikt

Prof. Dr. A. Hinney, N. Herrfurth, L. Schonnop und Dr. A. Volckmar geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hinney, A., Herrfurth, N., Schonnop, L. et al. Genetik und Epigenetik der Adipositas. Bundesgesundheitsbl. 58, 154–158 (2015). https://doi.org/10.1007/s00103-014-2094-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00103-014-2094-1

Schlüsselwörter

Keywords

Navigation