Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-12T06:09:56.184Z Has data issue: false hasContentIssue false

The signal of climate changes over the last two millennia in the Gulf of St. Lawrence, eastern Canada

Published online by Cambridge University Press:  21 October 2021

Xiner Wu*
Affiliation:
Geotop, Université du Québec à Montréal (UQAM), 201 avenue du Président Kennedy, Montréal, QuébecH3C 3P8, Canada
Anne de Vernal
Affiliation:
Geotop, Université du Québec à Montréal (UQAM), 201 avenue du Président Kennedy, Montréal, QuébecH3C 3P8, Canada
Bianca Fréchette
Affiliation:
Geotop, Université du Québec à Montréal (UQAM), 201 avenue du Président Kennedy, Montréal, QuébecH3C 3P8, Canada
Matthias Moros
Affiliation:
Leibniz Institute for Baltic Sea Research Warnemünde, Seestrasse 15, 18119, Rostock, Germany
Kerstin Perner
Affiliation:
Leibniz Institute for Baltic Sea Research Warnemünde, Seestrasse 15, 18119, Rostock, Germany
*
*Corresponding author at: Geotop, Université du Québec à Montréal (UQAM), 201 avenue du Président Kennedy, Montréal, Québec H3C 3P8, Canada. E-mail address: xiner.wu02@gmail.com (X. Wu).

Abstract

Climate changes over the past two millennia in the central part of the Gulf of St. Lawrence are documented in this paper with the aim of determining and understanding the natural climate variability and the impact of anthropogenic forcing at a regional scale. The palynological content (dinocysts, pollen, and spores) of the composite marine sediment core MSM46-03 collected in the Laurentian Channel was used to reconstruct oceanographic and climatic changes with a multidecadal temporal resolution. Sea-surface conditions, including summer salinity and temperature, sea-ice cover, and primary productivity, were reconstructed from dinocyst assemblages. Results revealed a remarkable cooling trend of about 4°C after 1230 cal yr BP (720 CE) and a culmination with a cold pulse dated to 170–40 cal yr BP (1780–1910 CE), which likely corresponds to the regional signal of the Little Ice Age. This cold interval was followed by a rapid warming of about 3°C. In the pollen assemblages, the decrease of Pinus abundance over the past 1700 yr suggests changes in wind regimes, likely resulting from increased southerly incursions of cold and dry Arctic air masses into southeastern Canada.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agriculture and Agri-Food Canada, 2013. National Ecological Framework for Canada. 2013-05-21 ed. Agriculture and Agri-Food Canada, Government of Canada (accessed April 7, 2020). https://open.canada.ca/data/en/dataset/3ef8e8a9-8d05-4fea-a8bf-7f5023d2b6e1.Google Scholar
Anderson, T.W., 1985. Late-Quaternary pollen records from eastern Ontario, Quebec, and Atlantic Canada. In: Bryant, V.M. and Holloway, R.G. (Ed.), Pollen Records of Late-Quaternary North American Sediments. American Association of Stratigraphic Palynologists Foundation, Dallas, Texas, pp. 281326.Google Scholar
Asnong, H., Richard, P.J.H., 2003. Postglacial vegetation and climate of the central and eastern Gaspésie, Québec. Géographie physique et Quaternaire 57, 3763.CrossRefGoogle Scholar
Balestra, B., Bertini, A., de Vernal, A., Monechi, S., Reale, V., 2013. Late Quaternary sea surface conditions in the Laurentian Fan: evidence from coccolith and dinocyst assemblages. Palaeogeography, Palaeoclimatology, Palaeoecology 387, 200210.CrossRefGoogle Scholar
Behrenfeld, M.J., Falkowski, P.G., 1997. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnology and Oceanography 42, 120.CrossRefGoogle Scholar
Blaauw, M., Christen, J., 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis 6, pp. 457474.CrossRefGoogle Scholar
Bryson, R.A., 1966. Air masses, streamlines and the boreal forest. Geographical Bulletin 8, 228266.Google Scholar
Bryson, R.A., Hare, F.K., 1974. Climates of North America. In: Bryson, R.A., Hare, F.K. (Eds.), Climates of North America: World Survey of Climatology, Vol. 11. Amsterdam: Elsevier. pp. 147.Google Scholar
Carcaillet, C., Richard, P., 2000. Holocene changes in seasonal precipitation highlighted by fire incidence in eastern Canada. Climate Dynamics 16, 549559.CrossRefGoogle Scholar
Cauchon-Voyer, G., Henry, M., Desrosiers, G., Lajeunesse, P., Locat, J., Rochon, A., St-Onge, G., 2005. Rapport de mission COR0503, Estuaire et Golfe du Saint-Laurent, 3 au 19 juin 2005. Cruise report. Available at: https://www.geotop.ca/sites/default/files/fichiers/Rapport_Coriolis_2005_0.pdfGoogle Scholar
Commission for Environmental Cooperation, 1997. Ecological Regions of North America: Toward a Common Perspective. Revised 2006. 1:12,500,000. Commission for Environmental Cooperation, Montreal, Quebec, Canada, 71 pp.Google Scholar
Desprat, S., Goñi, Sánchez, M.a.F., Loutre, M.-F., 2003. Revealing climatic variability of the last three millennia in northwestern Iberia using pollen influx data. Earth and Planetary Science Letters 213, 6378.CrossRefGoogle Scholar
de Vernal, A., Giroux, L., 1991. Distribution of organic walled microfossils in recent sediments from the Estuary and Gulf of St. Lawrence: some aspects of the organic matter fluxes. Canadian Journal of Fisheries and Aquatic Sciences 113, e199.Google Scholar
de Vernal, A., Guiot, J., Turon, J.-L., 1993. Late and postglacial paleoenvironments of the Gulf of St. Lawrence: marine and terrestrial palynological evidence. Géographie physique et Quaternaire 47, 167180.CrossRefGoogle Scholar
de Vernal, A., Henry, M., Bilodeau, G., 1999. Techniques de préparation et d'analyse en micropaléontologie. Les cahiers du GEOTOP 3, 1627.Google Scholar
de Vernal, A., Henry, M., Matthiessen, J., Mudie, P.J., Rochon, A., Boessenkool, K.P., Eynaud, F., Grøsfjeld, K., Guiot, J., Hamel, D., 2001. Dinoflagellate cyst assemblages as tracers of sea-surface conditions in the northern North Atlantic, Arctic and sub-Arctic seas: the new “n = 677” database and its application for quantitative palaeoceanographic reconstruction. Journal of Quaternary Science: Published for the Quaternary Research Association 16, 681698.CrossRefGoogle Scholar
de Vernal, A., Hillaire-Marcel, C., Rochon, A., Fréchette, B., Henry, M., Solignac, S., Bonnet, S., 2013a. Dinocyst-based reconstructions of sea ice cover concentration during the Holocene in the Arctic Ocean, the northern North Atlantic Ocean and its adjacent seas. Quaternary Science Reviews 79, 111121.CrossRefGoogle Scholar
de Vernal, A., Marret, F., 2007. Organic-walled dinoflagellate cysts: tracers of sea-surface conditions. In: Hillaire-Marcel, C., De Vernal, A. (Eds.), Developments in Marine Geology. Amsterdam: Elsevier, pp. 371408.Google Scholar
de Vernal, A., Radi, T., Zaragosi, S., Van Nieuwenhove, N., Rochon, A., Allan, E., De Schepper, S., et al. , 2020. Distribution of common modern dinoflagellate cyst taxa in surface sediments of the Northern Hemisphere in relation to environmental parameters: the new n=1968 database. Marine Micropaleontology, 159, 101796.CrossRefGoogle Scholar
de Vernal, A., Rochon, A., Fréchette, B., Henry, M., Radi, T., Solignac, S., 2013b. Reconstructing past sea ice cover of the Northern Hemisphere from dinocyst assemblages: status of the approach. Quaternary Science Reviews 79, 122134.CrossRefGoogle Scholar
Dhahri, N., 2010. Natural Variability of Pelagic and Benthic Conditions in the Gulf of St. Lawrence during the Late Holocene. MSc thesis, Université du Québec à Montréal, Canada.Google Scholar
Faegri, K., Iversen, J., 1964. Textbook of Pollen Analysis. 2nd ed. New York: Hafner Pub. Co.Google Scholar
Fréchette, B., Richard, P.J.H., Lavoie, M., Grondin, P., Larouche, A.C., 2021. Histoire postglaciaire de la végétation et du climat des pessières et des sapinières de l'est du Québec et du Labrador méridional. Gouvernement du Québec, ministère des Forêts, de la Faune et des Parcs, Direction de la recherche forestière. Mémoire de recherche forestière 186, 170 pp.Google Scholar
Galbraith, P.S., 2006. Winter water masses in the Gulf of St. Lawrence. Journal of Geophysical Research: Oceans 111, C06022. doi:10.1029/2005JC003159.CrossRefGoogle Scholar
Galbraith, P.S., Chassé, J., Caverhill, C., Nicot, P., Gilbert, D., Lefaivre, D., Lafleur, C., 2019. Physical Oceanographic Conditions in the Gulf of St. Lawrence during 2018. Research Document 2019/046. Department of Fisheries and Oceans, Canadian Science Advisory Secretariat, Ottawa, Ontario.Google Scholar
Galbraith, P.S., Larouche, P., Chassé, J., Petrie, B., 2012. Sea-surface temperature in relation to air temperature in the Gulf of St. Lawrence: interdecadal variability and long term trends. Deep-Sea Research Part II: Topical Studies in Oceanography 7780, 10–20.CrossRefGoogle Scholar
Genovesi, L., de Vernal, A., Thibodeau, B., Hillaire-Marcel, C., Mucci, A., Gilbert, D., 2011. Recent changes in bottom water oxygenation and temperature in the Gulf of St. Lawrence: Micropaleontological and geochemical evidence. Limnology and Oceanography 56, 13191329.CrossRefGoogle Scholar
Gilbert, D., Sundby, B., Gobeil, C., Mucci, A., Tremblay, G.H., 2005. A seventy-two-year record of diminishing deep-water oxygen in the St. Lawrence estuary: the northwest Atlantic connection. Limnology and Oceanography 50, 16541666.CrossRefGoogle Scholar
Gilliam, F.S., Goodale, C.L., Pardo, L.H., Geiser, L.H., Lilleskov, E.A., 2011. Eastern temperate forests. In: Pardo, L.H., Robin Abbott, M.J., Driscoll, C.T.(Eds.), Assessment of Nitrogen Deposition Effects and Empirical Critical Loads of Nitrogen for Ecoregions of the United States. Gen. Tech. Rep. NRS-80. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station, pp. 99116.Google Scholar
Guiot, J., de Vernal, A., 2007. Transfer functions: methods for quantitative paleoceanography based on microfossils. In: Hillaire-Marcel, C., De Vernal, A. (Eds.), Developments in Marine Geology. Amsterdam: Elsevier, pp. 523563.Google Scholar
Helama, S., Jones, P.D., Briffa, K.R., 2017. Dark Ages Cold Period: a literature review and directions for future research. The Holocene 27, 16001606.CrossRefGoogle Scholar
Hughes, P.D.M., Blundell, A., Charman, D.J., Bartlett, S., Daniell, J.R.G., Wojatschke, A., Chambers, F.M., 2006. An 8500 cal. year multi-proxy climate record from a bog in eastern Newfoundland: contributions of meltwater discharge and solar forcing. Quaternary Science Reviews 25, 12081227.CrossRefGoogle Scholar
Jessen, C.A., Solignac, S., Nørgaard-Pedersen, N., Mikkelsen, N., Kuijpers, A., Seidenkrantz, M.-S., 2011. Exotic pollen as an indicator of variable atmospheric circulation over the Labrador Sea region during the mid to late Holocene. Journal of Quaternary Science 26, 286296.CrossRefGoogle Scholar
Kaufman, D., McKay, N., Routson, C., Erb, M., Dätwyler, C., Sommer, P.S., Heiri, O., Davis, B., 2020. Holocene global mean surface temperature, a multi-method reconstruction approach. Scientific Data 7, 201.CrossRefGoogle ScholarPubMed
Koutitonsky, V., Bugden, C., 1991. The Physical Oceanography of the Gulf of St. Lawrence: A Review with Emphasis on the Synoptic Variability of the Motion. In: Therriault, J.-C. (Ed.), The Gulf of St. Lawrence: Small Ocean or Big Estuary? Canadian Special Publication of Fisheries and Aquatic Sciences 113. Fisheries and Oceans Canada, Ottawa, Ontario, pp. 5790.Google Scholar
Lamb, H.H., 1995. Climate, History and the Modern World. 2nd ed. New York: Routledge.Google Scholar
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A.C.M., Levrard, B., 2004. A long-term numerical solution for the insolation quantities of the Earth. Astronomy & Astrophysics 428, 261285.CrossRefGoogle Scholar
Lavoie, M., Filion, L., 2001. Holocene vegetation dynamics of Anticosti Island, Québec, and consequences of remoteness on ecological succession. Quaternary Research 56, 112127.CrossRefGoogle Scholar
Lemay-Tougas, M., 2014. Changements climatiques le long de la Côte Nord de l'Estuaire et du Golfe du Saint-Laurent durant l'Holocène: relation entre les conditions hydrographiques et le développement des tourbières ombrotrophes côtières. Master's thesis, Université du Québec à Montréal, Canada.Google Scholar
Levac, E., 2001. High resolution Holocene palynological record from the Scotian Shelf. Marine Micropaleontology 43, 179197.CrossRefGoogle Scholar
Levac, E., 2003. Palynological records from bay of islands, Newfoundland: direct correlation of Holocene paleoceanographic and climatic changes. Palynology 27, 135154.CrossRefGoogle Scholar
Macpherson, J.B., 1982. Postglacial vegetational history of the eastern Avalon Peninsula, Newfoundland, and Holocene climatic change along the eastern Canadian seaboard. Géographie physique et Quaternaire 36, 175196.CrossRefGoogle Scholar
Magnan, G., Garneau, M., 2014. Evaluating long-term regional climate variability in the maritime region of the St. Lawrence North Shore (eastern Canada) using a multi-site comparison of peat-based paleohydrological records. Journal of Quaternary Science 29, 209220.CrossRefGoogle Scholar
Mäkelä, E.M., 1996. Size distinctions between Betula pollen types—a review. Grana 35, 248256.CrossRefGoogle Scholar
Mann, M.E., Zhang, Z., Rutherford, S., Bradley, R.S., Hughes, M.K., Shindell, D., Ammann, C., Faluvegi, G., Ni, F., 2009. Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science 326, 12561260.CrossRefGoogle ScholarPubMed
Marcott, S.A., Shakun, J.D., Clark, P.U., Mix, A.C., 2013. A reconstruction of regional and global temperature for the past 11,300 years. Science 339, 11981201.CrossRefGoogle ScholarPubMed
Marcoux, N., Richard, P.J.H., 1995. Végétation et fluctuations climatiques postglaciaires sur la côte septentrionale gaspésienne, Québec. Canadian Journal of Earth Sciences 32, 7996.CrossRefGoogle Scholar
McAndrews, J.H., Berti, A.A., Norris, G., 1973. Key to the Quaternary pollen and spores of the Great Lakes region. Toronto: Royal Ontario Museum, pp. 159.Google Scholar
McCarthy, F.M.G., Collins, E.S., McAndrews, J.H., Kerr, H.A., Scott, D.B., Medioli, F.S., 1995. A comparison of postglacial arcellacean (“thecamoebian”) and pollen succession in Atlantic Canada, illustrating the potential of arcellaceans for paleoclimatic reconstruction. Journal of Paleontology 69, 980993.CrossRefGoogle Scholar
McNeely, R., Dyke, A.S., Southon, J.R., 2006. Canadian Marine Reservoir Ages, Preliminary Data Assessment. Geological Survey Canada. Open File 5049, 3 pp.CrossRefGoogle Scholar
Mertens, K., Verhoeven, K., Verleye, T., Louwye, S., Amorim, A., Ribeiro, S., Deaf, A., Harding, I., De Schepper, S., Gonzalez, C., 2009. Determining the absolute abundance of dinoflagellate cysts in recent marine sediments: the Lycopodium marker-grain method put to the test. Review of Palaeobotany and Palynology 157, 238252.CrossRefGoogle Scholar
Mudie, P.J., 1982. Pollen distribution in recent marine sediments, eastern Canada. Canadian Journal of Earth Sciences 19, 729747.CrossRefGoogle Scholar
Muller, S.D., Richard, P.J., Guiot, J., de Beaulieu, J.-L., Fortin, D., 2003. Postglacial climate in the St. Lawrence lowlands, southern Québec: pollen and lake-level evidence. Palaeogeography, Palaeoclimatology, Palaeoecology 193, 5172.CrossRefGoogle Scholar
Neukom, R., Steiger, N., Gómez-Navarro, J.J., Wang, J., Werner, J.P., 2019. No evidence for globally coherent warm and cold periods over the preindustrial Common Era. Nature 571, 550554.CrossRefGoogle ScholarPubMed
O'Brien, S.R., Mayewski, P.A., Meeker, L.D., Meese, D.A., Twickler, M.S., Whitlow, S.I., 1995. Complexity of Holocene climate as reconstructed from a Greenland ice core. Science 270, 19621964.CrossRefGoogle Scholar
PAGES 2k Consortium, 2013. Continental-scale temperature variability during the past two millennia. Nature Geoscience 6, 339346.CrossRefGoogle Scholar
Peros, M., Chan, K., Magnan, G., Ponsford, L., Carroll, J., McCloskey, T., 2016. A 9600-year record of water table depth, vegetation and fire inferred from a raised peat bog, Prince Edward Island, Canadian Maritimes. Journal of Quaternary Science 31, 512525.CrossRefGoogle Scholar
Pollehne, F., 2015. Short Cruise Report Maria S. Merian MSM 46 (accessed July 19, 2021). https://www.ldf.uni-hamburg.de/en/merian/wochenberichte/wochenberichte-merian/msm44-msm46/msm46-scr.pdf.Google Scholar
Pratte, S., Garneau, M., De Vleeschouwer, F., 2017. Late-Holocene atmospheric dust deposition in eastern Canada (St. Lawrence North Shore). The Holocene 27, 1225.CrossRefGoogle Scholar
Radi, T., Bonnet, S., Cormier, M.-A., de Vernal, A., Durantou, L., Faubert, É., Head, M.J., et al. , 2013. Operational taxonomy and (paleo-)autecology of round, brown, spiny dinoflagellate cysts from the Quaternary of high northern latitudes. Marine Micropaleontology 98, 4157.CrossRefGoogle Scholar
Ramsden, P.G., 1978. Two views on late prehistoric Iroquois trade and settlement: I: An hypothesis concerning the effects of early European trade among some Ontario Iroquois. Canadian Journal of Archaeology/Journal Canadien d'Archéologie 2, 101106.Google Scholar
R Development Core Team, 2013. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C.B., Buck, C.E., Cheng, H., Edwards, R.L., Friedrich, M., 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 18691887.CrossRefGoogle Scholar
Reimer, P.J., Reimer, R.W., 2001. A marine reservoir correction database and on-line interface. Radiocarbon 43, 461463.CrossRefGoogle Scholar
Richard, P., 1970. Atlas pollinique des arbres et de quelques arbustes indigènes du Québec. Le Naturaliste Canadien 97, 134, 97–161, 241–306.Google Scholar
Rochon, A., de Vernal, A., 1994. Palynomorph distribution in Recent sediments from the Labrador Sea. Canadian Journal of Earth Sciences 31, 115127.CrossRefGoogle Scholar
Rochon, A., de Vernal, A., Turon, J.-L., Matthiessen, J., Head, M.J., 1999. Distribution of recent dinoflagellate cysts in surface sediments from the North Atlantic and adjacent seas in relation to sea-surface parameters. American Association of Stratigraphic Palynologists Contribution Series 35, 1146.Google Scholar
Saucier, F.J., Roy, F., Gilbert, D., 2003. Modeling the formation and circulation processes of water masses and sea ice in the Gulf of St. Lawrence, Canada. Journal of Geophysical Research 108 (C8), 3269.CrossRefGoogle Scholar
Sauvé, A., 2016. Reconstitution Holocène de la végétation et du climat pour les régions de Baie-Comeau et d'Havre-Saint-Pierre, Québec. Master's thesis, Université du Québec à Montréal, Canada.Google Scholar
Seidov, D., Baranova, O.K., Johnson, D.R., Boyer, T.P., Mishonov, A.V., Parsons, A.R., 2016. Northwest Atlantic Regional Climatology. Regional Climatology Team, NOAA/NCEI. www.nodc.noaa.gov/OC5/regional_climate/nwa-climate, dataset: doi:10.7289/V5RF5S2Q (accessed August 17, 2020).Google Scholar
Sicre, M.A., Weckström, K., Seidenkrantz, M.S., Kuijpers, A., Benetti, M., Masse, G., Ezat, U., et al. , 2014. Labrador current variability over the last 2000 years. Earth and Planetary Science Letters 400, 2632.CrossRefGoogle Scholar
Solignac, S., Seidenkrantz, M.-S., Jessen, C., Kuijpers, A., Gunvald, A.K., Olsen, J., 2011. Late-Holocene sea-surface conditions offshore Newfoundland based on dinoflagellate cysts. The Holocene 21, 539552.CrossRefGoogle Scholar
Steinhilber, F., Abreu, J.A., Beer, J., Brunner, I., Christl, M., Fischer, H., Heikkila, U., et al. , 2012. 9,400 years of cosmic radiation and solar activity from ice cores and tree rings. Proceedings of the National Academy of Sciences USA 109, 59675971.CrossRefGoogle ScholarPubMed
ter Braak, C., Šmilauer, P., 2012. Canoco Reference Manual and User's Guide: Software of Ordination (Version 5.0). Microcomputer Power, Ithaca, NY.Google Scholar
Thibodeau, B., de Vernal, A., Hillaire-Marcel, C., Mucci, A., 2010. Twentieth century warming in deep waters of the Gulf of St. Lawrence: a unique feature of the last millennium. Geophysical Research Letters 37(17).CrossRefGoogle Scholar
Thibodeau, B., de Vernal, A., Limoges, A., 2013. Low oxygen events in the Laurentian Channel during the Holocene. Marine Geology 346, 183191.CrossRefGoogle Scholar
Viau, A.E., Gajewski, K., Fines, P., Atkinson, D.E., Sawada, M.C., 2002. Widespread evidence of 1500 yr climate variability in North America during the past 14 000 yr. Geology 30, 455458.2.0.CO;2>CrossRefGoogle Scholar
Webb, T., 1986. Is vegetation in equilibrium with climate? How to interpret late-Quaternary pollen data. Vegetatio 67, 7591.Google Scholar
Zonneveld, K.A.F., Versteegh, G., Kodrans-Nsiah, M., 2008. Preservation and organic chemistry of Late Cenozoic organic-walled dinoflagellate cysts: a review. Marine Micropaleontology 68, 179197.CrossRefGoogle Scholar
Supplementary material: File

Wu et al. supplementary material

Wu et al. supplementary material

Download Wu et al. supplementary material(File)
File 132.7 KB