Skip to main content
Log in

Hydrothermal synthesis of nanomoss Nb2O5 films and their ultraviolet photodetection performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Hydrothermal process is one of the most suitable and highly controlled synthesis methods for engineering or tailoring the nanostructures of metal oxide. In the present work, etching agent assisted hydrothermal process was employed to synthesis nanostructured Nb2O5. Nanomoss Nb2O5 films were successfully synthesized on niobium foil in the ammonia fluoride based solution with concentration of 0.5 and 1.65 M at 95 °C for 24 h. Material analysis of the nanomoss Nb2O5 was carried out by field emission scanning electron microscopy, atomic force microscopy, X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy analysis and Ultraviolet–visible spectroscopy. The XRD characterization revealed that the nanomoss Nb2O5 only become crystalline after annealing for 60 min at 440 °C. That annealing condition also contributes to the growth of hump structure on the nanomoss films. Furthermore, it was observed that the films produce low reflectance properties in the range of 2.73–26.0% at UV wavelengths, which make them a potential candidate in UV sensor applications. To fabricate the UV sensor, platinum (Pt) electrode was deposited as a contact pad. Based on the UV characterization, the UV sensor based on nanomoss Nb2O5 films exhibited good photosensitivity of 2.0 and response time in the range of 51.4–76.8 s when exposed under turn on/off of UV light (365 nm, 750 µW/cm2) at a bias voltage of 10 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L. Fei, X. Dongfeng, Fabrication of Nb2O5 nanotrees with controlled branching degrees. Physica Scripta. 2010, 014074 (2010)

    Google Scholar 

  2. H. Wen, Z. Liu, J. Wang, Q. Yang, Y. Li, J. Yu, Facile synthesis of Nb2O5 nanorod array films and their electrochemical properties. Appl. Surf. Sci. 257, 10084 (2011). https://doi.org/10.1016/j.apsusc.2011.07.001

    Article  CAS  Google Scholar 

  3. H. Luo, M. Wei, K. Wei, Synthesis of Nb2O5 nanosheets and its electrochemical measurements. Mater. Chem. Phys. 120, 6 (2010)

    Article  CAS  Google Scholar 

  4. R. Abdul Rani, A.S. Zoolfakar, J. Subbiah, J.Z. Ou, K. Kalantar-zadeh, Highly ordered anodized Nb2O5 nanochannels for dye-sensitized solar cells. Electrochem. Commun. 40, 20 (2014). https://doi.org/10.1016/j.elecom.2013.12.011

    Article  CAS  Google Scholar 

  5. R.A. Rani, A.S. Zoolfakar, J.Z. Ou et al., Reduced impurity-driven defect states in anodized nanoporous Nb2O5: the possibility of improving performance of photoanodes. ChemComm. 49, 6349 (2013). https://doi.org/10.1039/c3cc42998a

    Article  CAS  Google Scholar 

  6. J.Z. Ou, R.A. Rani, M.H. Ham et al., Elevated temperature anodized Nb2O5: a photoanode material with exceptionally large photoconversion efficiencies. ACS Nano 6, 4045 (2012)

    Article  CAS  Google Scholar 

  7. C. Nico, T. Monteiro, M.P.F. Graça, Niobium oxides and niobates physical properties: review and prospects. Prog. Mater. Sci. 80, 1 (2016). https://doi.org/10.1016/j.pmatsci.2016.02.001

    Article  CAS  Google Scholar 

  8. I. Zhitomirsky, Electrolytic deposition of niobium oxide films. Mater. Lett. 35, 188 (1998)

    Article  CAS  Google Scholar 

  9. K. Kamada, M. Mukai, Y. Matsumoto, Anodic dissolution of tantalum and niobium in acetone solvent with halogen additives for electrochemical synthesis of Ta2O5 and Nb2O5 thin films. Electrochimica Acta. 49, 321 (2004). https://doi.org/10.1016/j.electacta.2003.08.014

    Article  CAS  Google Scholar 

  10. T.-Y. Cho, K.-W. Ko, S.-G. Yoon et al., Efficiency enhancement of flexible dye-sensitized solar cell with sol–gel formed Nb2O5 blocking layer. Curr. Appl. Phys. 13, 1391 (2013). https://doi.org/10.1016/j.cap.2013.04.012

    Article  Google Scholar 

  11. M.P.F. Graca, A. Meireles, C. Nico, M.A. Valente, Nb2O5 nanosize powders prepared by sol-gel—structure, morphology and dielectric properties. J. Alloys Compd. 553, 177 (2013). https://doi.org/10.1016/j.jallcom.2012.11.128

    Article  CAS  Google Scholar 

  12. A. Verma, P.K. Singh, Sol-gel derived nanostructured niobium pentoxide thin films for electrochromic applications. Indian J. Chem. Sect. Inorg. Bio-Inorg. Phys. Theor. Anal. Chem. 52, 593 (2013)

    Google Scholar 

  13. E. Çetinörgü-Goldenberg, J.-E. Klemberg-Sapieha, L. Martinu, Effect of postdeposition annealing on the structure, composition, and the mechanical and optical characteristics of niobium and tantalum oxide films. Appl. Opt. 51, 6498 (2012). https://doi.org/10.1364/AO.51.006498

    Article  Google Scholar 

  14. K.N. Chen, C.M. Hsu, J. Liu, Y.C. Liou, C.F. Yang, Investigation of antireflection Nb2O5 thin films by the sputtering method under different. Depos. Parameters Micromach. 7, 151 (2016)

    Article  Google Scholar 

  15. ÖD. Coşkun, S. Demirela, The optical and structural properties of amorphous Nb2O5 thin films prepared by RF magnetron sputtering. Appl. Surf. Sci. 277, 35 (2013). https://doi.org/10.1016/j.apsusc.2013.03.116

    Article  CAS  Google Scholar 

  16. A. Dhar, T.L. Alford (2012) Optimization of Nb2O5/Ag/Nb2O5 multilayers as transparent composite electrode on flexible substrate with high figure of merit. J. Appl. Phys. https://doi.org/10.1063/1.4767662

    Article  Google Scholar 

  17. R. Ghosh, M.K. Brennaman, T. Uher et al., Nanoforest Nb2O5 photoanodes for dye-sensitized solar cells by pulsed laser deposition. ACS Appl. Mater. Interfaces 3, 3929 (2011). https://doi.org/10.1021/am200805x

    Article  CAS  Google Scholar 

  18. S. Hyunjun, C. Dooho, L. Dongsoo et al., Resistance-switching characteristics of polycrystalline Nb2O5 for nonvolatile memory application. IEEE Electron Device Lett. 26, 292 (2005). https://doi.org/10.1109/LED.2005.846592

    Article  CAS  Google Scholar 

  19. R.A. Rani, A.S. Zoolfakar, A.P. O’Mullane, M.W. Austin, K. Kalantar-Zadeh, Thin films and nanostructures of niobium pentoxide: fundamental properties, synthesis methods and applications. J. Mater. Chem. A 2, 15683 (2014). https://doi.org/10.1039/c4ta02561j

    Article  CAS  Google Scholar 

  20. Ü Özgür, Y.I. Alivov, C. Liu et al., A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005). https://doi.org/10.1063/1.1992666

    Article  CAS  Google Scholar 

  21. K. Kim, M.-S. Kim, P.-R. Cha, S.H. Kang, J.-H. Kim, Structural modification of self-organized nanoporous niobium oxide via hydrogen treatment. Chem. Mater. 28, 1453 (2016). https://doi.org/10.1021/acs.chemmater.5b04845

    Article  CAS  Google Scholar 

  22. J. Zhang, T. Liu, Y. Zhang, W. Zeng, F. Pan, X. Peng, Hydrothermal synthesis and growth mechanisms of different ZnO nanostructures and their gas-sensing properties. J. Mater. Sci. 26, 1347 (2015). https://doi.org/10.1007/s10854-014-2545-3

    Article  CAS  Google Scholar 

  23. M.N. Asiah, M.F.A.,M.H. Mamat, Z. Khusaimi, S. Abdullah, M. Rusop, Effect of hydrothermal growth temperature on the morphology and structural properties of synthesized TiO2 nanowires. Adv. Mater. Res. 667, 442 (2013)

    Article  Google Scholar 

  24. S.A. Kamaruddin, K.-Y. Chan, M.Z. Sahdan, M. Rusop, H. Saim, ZnO microstructures and nanostructures prepared by Sol-Gel hydrothermal technique. J. Nanosci. Nanotechnol. 10, 5618 (2010). https://doi.org/10.1166/jnn.2010.2444

    Article  CAS  Google Scholar 

  25. N.A. Jayah, H. Yahaya, M.R. Mahmood, T. Terasako, K. Yasui, A.M. Hashim, High electron mobility and low carrier concentration of hydrothermally grown ZnO thin films on seeded a-plane sapphire at low temperature. Nanoscale Res. Lett. 10, 7 (2015). https://doi.org/10.1186/s11671-014-0715-0

    Article  CAS  Google Scholar 

  26. K.A. Eswar, J. Rouhi, F.S. Husairi et al., Hydrothermal growth of flower-like ZnO nanostructures on porous silicon substrate. J. Mol. Struct. 1074, 140 (2014). https://doi.org/10.1016/j.molstruc.2014.05.067

    Article  CAS  Google Scholar 

  27. J. Rouhi, F.S.H.,K.A. Eswar, S.A.H. Alrokayan, H.A. Khan, M. Rusop, Vertical growth of ZnO nanocone arrays on polycarbonate substrate by voltage-assisted chemical bath deposition. Adv. Mater. Res. 1109, 495 (2015)

    Article  Google Scholar 

  28. J.H. Kang, Y. Myung, J.W. Choi et al., Nb2O5 nanowire photoanode sensitized by a composition-tuned CdSxSe1-x shell. J. Mater. Chem. 22, 8413 (2012)

    Article  CAS  Google Scholar 

  29. X. Fang, L. Hu, K. Huo et al., New ultraviolet photodetector based on individual Nb2O5 nanobelts. Adv. Funct. Mater. 21, 3907 (2011). https://doi.org/10.1002/adfm.201100743

    Article  CAS  Google Scholar 

  30. J. He, Y. Hu, Z. Wang et al., Hydrothermal growth and optical properties of Nb2O5 nanorod arrays. J. Mater. Chem. C 2, 8185 (2014). https://doi.org/10.1039/c4tc01581a

    Article  CAS  Google Scholar 

  31. Y. Jerry, Y. Liu, W. Hao et al., Hydrothermally formed functional niobium oxide doped tungsten nanorods. Nanotechnology 24, 495501 (2013)

    Article  Google Scholar 

  32. R.A. Rani, A.S. Zoolfakar, J.Z. Ou, M.R. Field, M. Austin, K. Kalantar-zadeh, Nanoporous Nb2O5 hydrogen gas sensor. Sens. Actuators, B 176, 149 (2013). https://doi.org/10.1016/j.snb.2012.09.028

    Article  CAS  Google Scholar 

  33. C.D. Cooper, J.F. Mustard, Effects of very fine particle size on reflectance spectra of smectite and palagonitic soil. Icarus 142, 557 (1999). https://doi.org/10.1006/icar.1999.6221

    Article  CAS  Google Scholar 

  34. V. Galstyan, E. Comini, G. Faglia, G. Sberveglieri, Synthesis of self-ordered and well-aligned Nb2O5 nanotubes. CrystEngComm 16, 10273 (2014). https://doi.org/10.1039/c4ce01540a

    Article  CAS  Google Scholar 

  35. M. Joya, J. Barba Ortega, A. Raba Paez, J. da Silva Filho, P. Cavalcante Freire, Synthesis and characterization of nano-particles of niobium pentoxide with. orthorhombic symmetry. Metals 7, 142 (2017)

    Article  CAS  Google Scholar 

  36. J.K. Dash, L. Chen, M.R. Topka et al., A simple growth method for Nb2O5 films and their optical properties. RSC Adv. 5, 36129 (2015). https://doi.org/10.1039/c5ra05074j

    Article  CAS  Google Scholar 

  37. P. Amaravathy, S. Sowndarya, S. Sathyanarayanan, N. Rajendran, Novel sol gel coating of Nb2O5 on magnesium alloy for biomedical applications. Surf. Coat. Technol. 244, 131 (2014). https://doi.org/10.1016/j.surfcoat.2014.01.050

    Article  CAS  Google Scholar 

  38. X. Jin, C. Liu, J. Xu, Q. Wang, D. Chen, Size-controlled synthesis of mesoporous Nb2O5 microspheres for dye sensitized solar cells. RSC Adv. 4, 35546 (2014). https://doi.org/10.1039/c4ra06101b

    Article  CAS  Google Scholar 

  39. D.C. Castro, R.P. Cavalcante, J. Jorge et al., Synthesis and characterization of mesoporous Nb2O5 and its application for photocatalytic degradation of the herbicide methylviologen. J. Braz. Chem. Soc. 27, 303 (2016)

    CAS  Google Scholar 

  40. S. Ge, H. Jia, H. Zhao, Z. Zheng, L. Zhang, First observation of visible light photocatalytic activity of carbon modified Nb2O5 nanostructures. J. Mater. Chem. 20, 3052 (2010). https://doi.org/10.1039/b923586h

    Article  CAS  Google Scholar 

  41. F. Khan, S.-H. Baek, N. Ahmad et al., Correlation between reflectance and photoluminescent properties of al-rich ZnO nano-structures. Met. Mater. Int. 21, 561 (2015). https://doi.org/10.1007/s12540-015-4376-z

    Article  CAS  Google Scholar 

  42. A. Elaziouti, N. Laouedj, A. Bekka, R.-N. Vannier, Preparation and characterization of p–n heterojunction CuBi2O4/CeO2 and its photocatalytic activities under UVA light irradiation. JKSUS. 27, 120 (2015). https://doi.org/10.1016/j.jksus.2014.08.002

    Article  Google Scholar 

  43. M.H. Mamat, M.F. Malek, N.N. Hafizah, Z. Khusaimi, M.Z. Musa, M. Rusop, Fabrication of an ultraviolet photoconductive sensor using novel nanostructured, nanohole-enhanced, aligned aluminium-doped zinc oxide nanorod arrays at low immersion times. Sens. Actuators B 195, 609 (2014). https://doi.org/10.1016/j.snb.2014.01.082

    Article  CAS  Google Scholar 

  44. H. Liu, N. Gao, M. Liao, X. Fang, Hexagonal-like Nb2O5 nanoplates-based photodetectors and photocatalyst with high performances. Sci. Rep. 5, 7716 (2015). https://doi.org/10.1038/srep07716

    Article  CAS  Google Scholar 

  45. J.H. Jun, H. Seong, K. Cho, B.-M. Moon, S. Kim, Ultraviolet photodetectors based on ZnO nanoparticles. Ceram. Int. 35, 2797 (2009). https://doi.org/10.1016/j.ceramint.2009.03.032

    Article  CAS  Google Scholar 

  46. M.H. Mamat, M.I. Che Khalin, N.N.H. Nik Mohammad et al., Effects of annealing environments on the solution-grown, aligned aluminium-doped zinc oxide nanorod-array-based ultraviolet photoconductive. Sens. J. Nanomater. 2012, 15 (2012). https://doi.org/10.1155/2012/189279

    Article  CAS  Google Scholar 

  47. V.D. Mihailetchi, J. Wildeman, P.W.M. Blom, Space-charge limited photocurrent. Phys. Rev. Lett. 94, 126602 (2005)

    Article  CAS  Google Scholar 

  48. T.-Y. Tiong, C.-F. Dee, A.A. Hamzah et al., A rapid responding ultraviolet sensor based on multi-parallel aligned ZnO nanowires field effect transistor. Sens. Actuators A 260, 139 (2017). https://doi.org/10.1016/j.sna.2017.04.022

    Article  CAS  Google Scholar 

  49. Y.B. Lee, S.K. Kim, Y.R. Lim et al., Dimensional-hybrid structures of 2D materials with ZnO nanostructures via pH-mediated hydrothermal growth for flexible UV photodetectors. ACS Appl. Mater. Interfaces. 9, 15031 (2017). https://doi.org/10.1021/acsami.7b01330

    Article  CAS  Google Scholar 

  50. S. Singh, Y. Kumar, H. Kumar et al., A study of hydrothermally grown ZnO nanorod-based metal-semiconductor-metal UV detectors on glass substrates. Nanomater. Nanotechnol. 7, 1847980417702144 (2017). https://doi.org/10.1177/1847980417702144

    Article  Google Scholar 

  51. H. Wang, P. Qin, G. Yi et al., A high-sensitive ultraviolet photodetector composed of double-layered TiO2 nanostructure and Au nanoparticles film based on Schottky junction. Mater. Chem. Phys. 194, 42 (2017). https://doi.org/10.1016/j.matchemphys.2017.03.019

    Article  CAS  Google Scholar 

  52. Y. Wang, J. Cheng, M. Shahid, M. Zhang, W. Pan, A high-performance TiO2 nanowire UV detector assembled by electrospinning. RSC Adv. 7, 26220 (2017). https://doi.org/10.1039/c7ra03072j

    Article  CAS  Google Scholar 

  53. A.A.M. Ali, A.B. Suriani, R.J. Akram, The enhancement Of UV sensor response by zinc oxide nanorods/reduced graphene oxide bilayer nanocomposites film. In: Journal of Physics: Conference Series, vol. 1003, 2018, p. 012070

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Fundamental Research Grant Scheme (FRGS) (Project Code: 600-IRMI/FRGS 5/3 (081/2017)), Ministry of Education, Malaysia. Thanks also to Institute of Research Management and Innovation (IRMI), Universiti Teknologi MARA (UiTM) and the Deanship of Scientific Research, King Saud University (KSU) for their support through Vice Deanship of Scientific Research Chairs. The authors would like to express gratitude to Mohd Azlan Jaafar, Nurul Wahida Aziz and Salifairus Mohammad Jafar from NANO-SciTech Centre, Institute of Science, UiTM for their assistance whom plays significant roles in our work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rozina Abdul Rani or Mohamad Rusop Mahmood.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdul Rani, R., Zoolfakar, A.S., Khairir, N.S. et al. Hydrothermal synthesis of nanomoss Nb2O5 films and their ultraviolet photodetection performance. J Mater Sci: Mater Electron 29, 16765–16774 (2018). https://doi.org/10.1007/s10854-018-9770-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9770-0

Navigation