GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2,848)
Document type
  • Articles  (2,848)
Source
Publisher
Years
Topic
  • 1
    Publication Date: 2018-03-16
    Description: Purpose To evaluate the feasibility of an improved motion and flow robust methodology for imaging the pulmonary vasculature using non-contrast-enhanced, free-breathing, golden-angle radial MRI. Methods Healthy volunteers ( n  = 10, age 46 ± 11 years, 50% female) and patients ( n  = 2, ages 27 and 84, both female) were imaged at 1.5 T using a Cartesian and golden-angle radial 2D balanced SSFP pulse sequence. The acquisitions were made under free breathing without contrast agent enhancement. The radial acquisitions were reconstructed at 3 temporal footprints. All series were scored from 1 to 5 for perceived diagnostic quality, artifact level, and vessel sharpness in multiple anatomical locations. In addition, vessel sharpness and blood-to-blood clot contrast were measured. Results Quantitative measurements showed higher vessel sharpness for golden-angle radial ( n  = 76, 0.79 ± 0.11 versus 0.71 ± 0.16, p  〈 .05). Blood-to-blood clot contrast was found to be 23% higher in golden-angle radial in the 2 patients. At comparable temporal footprints, golden-angle radial was scored higher for diagnostic quality (mean ± SD, 2.3 ± 0.7 versus 2.2 ± 0.6, p  〈 .01) and vessel sharpness (2.2 ± 0.8 versus 2.1 ± 0.5, p  〈 .01), whereas the artifact level did not differ (3.0 ± 0.9 versus 3.0 ± 1.0, p  = .80). The ability to retrospectively choose a temporal resolution and perform sliding-window reconstructions was demonstrated in patients. Conclusion In pulmonary artery imaging, the motion and flow robustness of a radial trajectory does both improve image quality over Cartesian trajectory in healthy volunteers, and allows for flexible selection of temporal footprints and the ability to perform real-time sliding window reconstructions, which could potentially provide further diagnostic insight.
    Print ISSN: 0740-3194
    Electronic ISSN: 1522-2594
    Topics: Medicine
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-03-14
    Description: Purpose To characterize and suppress stripe artifact associated with velocity-selective (VS) magnetization for unenhanced MRA. Methods Extended phase graph formalism was used to show that the stripe artifact contains multiples of the fundamental frequency that is determined by the area of unipolar VS gradient. Four VS preparation pulses whose excitation profiles are spatially shifted by quarter the fundamental period of the stripes, were applied alternately. For further suppression of the artifact, k-space data at k z  = 0 were averaged over the 4 VS preparations. The proposed schemes were tested in a chicken breast phantom and healthy human subjects. Results When the standard VS preparation scheme was used, stripe artifact was shown in all the reconstructed images and appeared as artifactual peaks in k-space that corresponded to the first and second order harmonics of the fundamental frequency. Alternate application of the 4 phase-shifted VS preparation pulses suppressed the stripes, but not completely, as evidenced by residual erroneous peaks in k-space. After the k-space averaging, the stripe artifact was nearly eliminated. Conclusion Stripe artifact in VS-MRA consists of multiples of the fundamental frequency and can be effectively suppressed through alternate application of phase-shifted VS preparations along with k-space averaging.
    Print ISSN: 0740-3194
    Electronic ISSN: 1522-2594
    Topics: Medicine
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-03-14
    Description: Purpose To build and evaluate a small-footprint, lightweight, high-performance 3T MRI scanner for advanced brain imaging with image quality that is equal to or better than conventional whole-body clinical 3T MRI scanners, while achieving substantial reductions in installation costs. Methods A conduction-cooled magnet was developed that uses less than 12 liters of liquid helium in a gas-charged sealed system, and standard NbTi wire, and weighs approximately 2000 kg. A 42-cm inner-diameter gradient coil with asymmetric transverse axes was developed to provide patient access for head and extremity exams, while minimizing magnet-gradient interactions that adversely affect image quality. The gradient coil was designed to achieve simultaneous operation of 80-mT/m peak gradient amplitude at a slew rate of 700 T/m/s on each gradient axis using readily available 1-MVA gradient drivers. Results In a comparison of anatomical imaging in 16 patients using T 2 -weighted 3D fluid-attenuated inversion recovery (FLAIR) between the compact 3T and whole-body 3T, image quality was assessed as equivalent to or better across several metrics. The ability to fully use a high slew rate of 700 T/m/s simultaneously with 80-mT/m maximum gradient amplitude resulted in improvements in image quality across EPI, DWI, and anatomical imaging of the brain. Conclusions The compact 3T MRI system has been in continuous operation at the Mayo Clinic since March 2016. To date, over 200 patient studies have been completed, including 96 comparison studies with a clinical 3T whole-body MRI. The increased gradient performance has reliably resulted in consistently improved image quality.
    Print ISSN: 0740-3194
    Electronic ISSN: 1522-2594
    Topics: Medicine
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-03-14
    Description: Purpose The ultimate intrinsic signal-to-noise ratio (UISNR) represents an upper bound for the achievable SNR of any receive coil. To reach this threshold a complete basis set of equivalent surface currents is required. This study systematically investigated to what extent either loop- or dipole-like current patterns are able to reach the UISNR threshold in a realistic human head model between 1.5 T and 11.7 T. Based on this analysis, we derived guidelines for coil designers to choose the best array element at a given field strength. Moreover, we present ideal current patterns yielding the UISNR in a realistic body model. Methods We distributed generic current patterns on a cylindrical and helmet-shaped surface around a realistic human head model. We excited electromagnetic fields in the human head by using eigenfunctions of the spherical and cylindrical Helmholtz operator. The electromagnetic field problem was solved by a fast volume integral equation solver. Results At 7 T and above, adding curl-free current patterns to divergence-free current patterns substantially increased the SNR in the human head (locally 〉20%). This was true for the helmet-shaped and the cylindrical surface. On the cylindrical surface, dipole-like current patterns had high SNR performance in central regions at ultra-high field strength. The UISNR increased superlinearly with B0 in most parts of the cerebrum but only sublinearly in the periphery of the human head. Conclusion The combination of loop and dipole elements could enhance the SNR performance in the human head at ultra-high field strength.
    Print ISSN: 0740-3194
    Electronic ISSN: 1522-2594
    Topics: Medicine
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-03-12
    Description: Purpose To improve 2D noncontrast-enhanced MRA by using a helical time-of-flight (TOF) acquisition technique and a slice-super-resolution reconstruction. Methods The TOF technique is combined with a helical trajectory with golden-angle–based radial projection reordering. A continuous spatial shift in slice direction is realized by adjusting the frequency of the excitation pulse between the individual projections. The limited resolution along the shift direction is improved by a deconvolution with simulated slice profile. The helical TOF (hTOF) was compared in vivo with a conventional 2D and 3D TOF. Results Results from in vivo experiments on the carotid show that the visual resolution in slice direction can be improved by using hTOF and the slice-super-resolution reconstruction. The vessels appear up to 1.5 times sharper and can be better separated from each other. Compared to 2D TOF images, the stair step artifacts are strongly reduced in reformatted hTOF images, whereas measurement time is decreased by at least 35%. Compared to 3D TOF, the hTOF offers a higher blood-to-background contrast, better visualization of smaller vessels, and reduced measurement time. Conclusion The hTOF benefits from a 2D acquisition and a 3D reconstruction, which makes it a promising technique for the noncontrast-enhanced imaging of the carotid.
    Print ISSN: 0740-3194
    Electronic ISSN: 1522-2594
    Topics: Medicine
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-03-12
    Description: Purpose Deranged metabolism is now recognized as a key causal factor in a variety of heart diseases, and is being studied extensively. However, invasive methods may alter metabolism, and conventional imaging techniques measure tracer uptake but not downstream metabolism. These challenges may be overcome by hyperpolarized MR, a noninvasive technique currently crossing the threshold into human trials. The aim of this study was to image metabolic changes in the heart in response to endogastric glucose bolus and to acute hypertension. Methods Five postprandial pigs were scanned with hyperpolarized [1- 13 C]pyruvate cardiac MR at baseline, after oral glucose bolus, and after infusion of angiotensin-II. Results No effect of glucose bolus was seen using hyperpolarized [1- 13 C]pyruvate MR despite changes in circulating substrates. During angiotensin-II infusion, blood pressure increased 179% ( P  = 0.008) and ejection fraction decreased from 54 ± 2% to 47 ± 6% ( P  = 0.03) The hemodynamic changes were accompanied by increases in the hyperpolarized [1- 13 C]pyruvate MR derived ratios of lactate/alanine (from 0.58 ± 0.13 to 0.78 ± 0.06, P  = 0.03) and bicarbonate/alanine (from 0.55 ± 0.12 to 0.91 ± 0.14, P  = 0.007). Conclusion Glucose loading did not alter cardiac metabolism, but during acute hypertensive stress, cardiac aerobic, carbohydrate metabolism, and pyruvate-lactate exchange was altered. Hyperpolarized MR allows noninvasive evaluation of acute changes in cardiac metabolism. However, hemodynamics must be taken into account when interpreting the results.
    Print ISSN: 0740-3194
    Electronic ISSN: 1522-2594
    Topics: Medicine
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-03-12
    Description: Purpose To demonstrate a computationally efficient and theoretically artifact-free method to calculate static field (B 0 ) inhomogeneity in a volume of interest induced by an arbitrary voxelated susceptibility distribution. Methods Our method computes B 0 by circular convolution between a zero-filled susceptibility matrix and a shifted, voxel-integrated dipolar field kernel on a grid of size N S +N T – 1 in each dimension, where N S and N T are the sizes of the susceptibility source and B 0 target grids, respectively. The computational resource requirement is independent of source-target separation. The method, called generalized susceptibility voxel convolution, is demonstrated on three susceptibility models: an ellipsoid, MR-compatible screws, and a dynamic human heartbeat model. Results B 0 in an ellipsoid calculated by generalized susceptibility voxel convolution matched an analytical solution nearly exactly. The method also calculated screw-induced B 0 in agreement with experimental data. Dynamic simulation demonstrated its computational efficiency for repeated B 0 calculations on time-varying susceptibility. On the contrary, conventional and alias-subtracted k-space-discretized Fourier convolution methods showed nonnegligible aliasing and Gibbs ringing artifacts in the tested models. Conclusion Generalized susceptibility voxel convolution can be a fast and reliable way to compute susceptibility-induced B 0 when the susceptibility source is not colocated with the B 0 target volume of interest, as in modeling B 0 variations from motion and foreign objects.
    Print ISSN: 0740-3194
    Electronic ISSN: 1522-2594
    Topics: Medicine
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-03-12
    Description: Purpose To correct gradient timing delays in non-Cartesian MRI while simultaneously recovering corruption-free auto-calibration data for parallel imaging, without additional calibration scans. Methods The calibration matrix constructed from multi-channel k-space data should be inherently low-rank. This property is used to construct reconstruction kernels or sensitivity maps. Delays between the gradient hardware across different axes and RF receive chain, which are relatively benign in Cartesian MRI (excluding EPI), lead to trajectory deviations and hence data inconsistencies for non-Cartesian trajectories. These in turn lead to higher rank and corrupted calibration information which hampers the reconstruction. Here, a method named Simultaneous Auto-calibration and Gradient delays Estimation (SAGE) is proposed that estimates the actual k-space trajectory while simultaneously recovering the uncorrupted auto-calibration data. This is done by estimating the gradient delays that result in the lowest rank of the calibration matrix. The Gauss-Newton method is used to solve the non-linear problem. The method is validated in simulations using center-out radial, projection reconstruction and spiral trajectories. Feasibility is demonstrated on phantom and in vivo scans with center-out radial and projection reconstruction trajectories. Results SAGE is able to estimate gradient timing delays with high accuracy at a signal to noise ratio level as low as 5. The method is able to effectively remove artifacts resulting from gradient timing delays and restore image quality in center-out radial, projection reconstruction, and spiral trajectories. Conclusion The low-rank based method introduced simultaneously estimates gradient timing delays and provides accurate auto-calibration data for improved image quality, without any additional calibration scans.
    Print ISSN: 0740-3194
    Electronic ISSN: 1522-2594
    Topics: Medicine
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-03-12
    Description: Purpose To evaluate the performance of micro-electromechanical systems (MEMS) switches against PIN diodes for switching a dual-tuned RF coil between 19 F and 1 H resonant frequencies for multi-nuclear lung imaging. Methods A four-element fixed-phase and amplitude transmit–receive RF coil was constructed to provide homogeneous excitation across the lungs, and to serve as a test system for various switching methods. The MR imaging and RF performance of the coil when switched between the 19 F and 1 H frequencies using MEMS switches, PIN diodes and hardwired configurations were compared. Results The performance of the coil with MEMS or PIN diode switching was comparable in terms of RF measurements, transmit efficiency and image SNR on both 19 F and 1 H nuclei. When the coil was not switched to the resonance frequency of the respective nucleus being imaged, reductions in the transmit efficiency were observed of 32% at the 19 F frequency and 12% at the 1 H frequency. The coil provides transmit field homogeneity of ±12.9% at the 1 H frequency and ±14.4% at the 19 F frequency in phantoms representing the thorax with the air space of the lungs filled with perfluoropropane gas. Conclusion MEMS and PIN diodes were found to provide comparable performance in on-state configuration, while MEMS were more robust in off-state high-powered operation (〉1 kW), providing higher isolation and requiring a lower DC switching voltage than is needed for reverse biasing of PIN diodes. In addition, clear benefits of switching between the 19 F and 1 H resonances were demonstrated, despite the proximity of their Larmor frequencies.
    Print ISSN: 0740-3194
    Electronic ISSN: 1522-2594
    Topics: Medicine
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-03-12
    Description: Purpose 2D turbo-spin-echo (TSE) is widely used in the clinic for neuroimaging. However, the long refocusing radiofrequency pulse train leads to high specific absorption rate (SAR) and alters the contrast compared to conventional spin-echo. The purpose of this work is to develop a robust 2D spiral TSE technique for fast T 2 -weighted imaging with low SAR and improved contrast. Methods A spiral-in/out readout is incorporated into 2D TSE to fully take advantage of the acquisition efficiency of spiral sampling while avoiding potential off-resonance-related artifacts compared to a typical spiral-out readout. A double encoding strategy and a signal demodulation method are proposed to mitigate the artifacts because of the T 2 -decay-induced signal variation. An adapted prescan phase correction as well as a concomitant phase compensation technique are implemented to minimize the phase errors. Results Phantom data demonstrate the efficacy of the proposed double encoding/signal demodulation, as well as the prescan phase correction and concomitant phase compensation. Volunteer data show that the proposed 2D spiral TSE achieves fast scan speed with high SNR, low SAR, and improved contrast compared to conventional Cartesian TSE. Conclusion A robust 2D spiral TSE technique is feasible and provides a potential alternative to conventional 2D Cartesian TSE for T 2 -weighted neuroimaging.
    Print ISSN: 0740-3194
    Electronic ISSN: 1522-2594
    Topics: Medicine
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...