GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1,394)
Document type
  • Articles  (1,394)
Source
Publisher
Years
Topic
  • 1
    Publication Date: 2018-03-16
    Description: Geomorpholosgical changes in recent decades in an arid transgressive coastal dune system (Maspalomas, Gran Canaria, Canary Islands) are analyzed. The methodology used is based on the generation of two geomorphological maps (1961 and 2003) by interpretation of digital orthophotos. The overlay of both maps in a geographic information system (GIS) enabled the spatial and surface changes of the landforms to be determined, and the processes that generated these changes. Twelve cultural and geomorphological processes were identified from highest to lowest importance, namely: anthropization by urban occupation (114 ha changed), stabilization (92.5 ha), barchanization (37 ha), salinization/halophytication (15 ha), anthropization (12.4 ha), deflation (11.8 ha), dune loss/beach gain (11.3 ha), dune formation (9.6 ha), progradation (8 ha), retrogradation (7.7 ha), destabilization (2.7 ha) and flooding (0.7 ha). Geomorphological changes are associated with a combination of five main factors, three of anthropogenic origin and two natural ones. The natural factors are: 1) the arid climate, which favors changes occurring at high speed; and 2) the existence of a progressive sedimentary deficit. Anthropogenic factors are: 3) construction of tourist urbanizations, infrastructures and facilities; 4) installation of equipment or infrastructure on the beaches; and 5) the activities carried out by users. These human factors have altered the aeolian dynamics and reduced the area occupied by vegetation in some areas, causing changes in aeolian sedimentary processes. The geomorphological processes identified can be used as indicators of environmental change, allowing us to synthesize the changes in landforms detected, and group all combinations derived from the analysis by GIS and analyse them spatially. Thus, the environmental changes in the transgressive coastal dune systems could be interpreted more effectively.
    Print ISSN: 0197-9337
    Electronic ISSN: 1096-9837
    Topics: Geography , Geosciences
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-03-13
    Description: Though it is well-known that vegetation affects the water balance of soils through canopy interception and evapotranspiration, its hydrological contribution to soil hydrology and stability is yet to be fully quantified. To improve understanding of this hydrological process, soil water dynamics have been monitored at three adjacent hillslopes with different vegetation covers (deciduous tree cover, coniferous tree cover, and grass cover), for nine months from December 2014 to September 2015. The monitored soil moisture values were translated into soil matric suction (SMS) values to facilitate the analysis of hillslope stability. Our observations showed significant seasonal variations in SMS for each vegetation cover condition. However, a significant difference between different vegetation covers was only evident during the winter season where the mean SMS under coniferous tree cover (83.6 kPa) was significantly greater than that under grass cover (41 kPa). The hydrological reinforcing contribution due to matric suction was highest for the hillslope with coniferous tree cover, while the hillslope with deciduous tree cover was second and the hillslope with grass cover was third. The greatest contributions for all cover types were during the summer season. During the winter season, the wettest period of the monitoring study, the additional hydrological reinforcing contributions provided by the deciduous tree cover (1.5 to 6.5 kPa) or the grass cover (0.9 to 5.4 kPa) were insufficient to avoid potential slope failure conditions. However, the additional hydrological reinforcing contribution from the coniferous tree cover (5.8 to 10.4 kPa) was sufficient to provide potentially stable hillslope conditions during the winter season. Our study clearly suggests that during the winter season the hydrological effects from both deciduous tree and grass covers are insufficient to promote slope stability, while the hydrological reinforcing effects from the coniferous tree cover are sufficient even during the winter season.
    Print ISSN: 0197-9337
    Electronic ISSN: 1096-9837
    Topics: Geography , Geosciences
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-03-13
    Description: Semi-arid ecosystems are often spatially self-organized in typical patterns of vegetation bands with high plant cover interspersed with bare soil areas, also known as ‘tiger bush’. In modelling studies, most often, straight planar slopes were used to analyse vegetation patterning. The effect of slope steepness has been investigated widely, and some studies investigated the effects of microtopography and hillslope orientation. However, at the larger catchment scale, the overall form of the landscape may affect vegetation patterning and these more complex landscapes are much more prevalent than straight slopes. Hence, our objective was to determine the effect of landform variation on vegetation patterning and sediment dynamics. We linked two well-established models that simulate (a) plant growth, death and dispersal of vegetation, and (b) erosion and sedimentation dynamics. The model was tested on a straight planar hillslope and then applied to (i) a set of simple synthetic topographies with varying curvature and (ii) three more complex, real-world landscapes of distinct morphology. Results show banded vegetation patterning on all synthetic topographies, always perpendicular to the slope gradient. Interestingly, we also found that movement of bands – a debated phenomenon – seems to be dependent on curvature. Vegetation banding was simulated on the slopes of the alluvial fan and along the valley slopes of the dissected and rolling landscapes. In all landscapes, local valleys developed a full vegetation cover induced by water concentration, which is consistent with observations worldwide. Finally, banded vegetation patterns were found to reduce erosion significantly as compared to other vegetation configurations.
    Print ISSN: 0197-9337
    Electronic ISSN: 1096-9837
    Topics: Geography , Geosciences
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-03-13
    Description: The ability to continuously monitor the dynamic response of periglacial landforms in a climate change context is of increasing scientific interest. Satellite radar interferometry provides information on surface displacement that can be related to periglacial processes. Here we present a comparison of 2D surface displacement rates and geomorphological mapping at periglacial landform and sediment scale from the mountain Nordnesfjellet in Northern Norway. 2D InSAR results stem from a 2009-2014 TerraSAR-X dataset from ascending and descending orbits, decomposed into horizontal displacement vectors along a W-E plane, vertical displacement vectors and combined displacement velocity. Geomorphological mapping was carried out on aerial imagery and validated in the field. This detailed landform and sediment type mapping revealed an altitudinal distribution dominated by, weathered bedrock blockfields, surrounded primarily by slightly, to non-vegetated solifluction landforms at the mountain tops. Below, an active rockslide and associated rockfall deposits are located on the steep east-facing side of the study area, whereas glacial sediments dominate on the gentler western side. We show that 2D InSAR correctly depicts displacement rates that can be associated with typical deformation patterns for flat-lying or inclined landforms, within and below the regional permafrost limit, for both wet and dry areas. A net lowering of the entire landscape caused by general denudation of the periglacial landforms and sediments is here quantified for the first time using radar remote sensing.
    Print ISSN: 0197-9337
    Electronic ISSN: 1096-9837
    Topics: Geography , Geosciences
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-03-13
    Description: It is not new to recognise that data from remote sensing platforms is transforming the way we characterise and analyse our environment. The ability to collect continuous data spanning spatial scales now allows geomorphological research in a data rich environment and this special issue (coming just 7 years after the 2010 special issue of ESPL associated with the remote sensing of rivers) highlights the considerable research effort being made to exploit this information, into new understanding of geomorphic form and process. The 2010 special issue on the remote sensing of rivers noted that fluvial remote sensing papers made up some 14% of the total river related papers in ESPL. A similar review of the papers up to 2017 reveals that this figure has increased to around 25% with a recent proliferation of articles utilising satellite based data and structure from motion derived data. It is interesting to note, however that many studies published to date are proof of concept, concentrating on confirming the accuracy of the remotely sensed data at the expense of generating new insights and ideas on fluvial form and function. Data is becoming ever more accurate and researchers should now be concentrating on analysing these early data sets to develop increased geomorphic insight challenging paradigms and moving the science forward. The prospect of this occurring is increased by the fact that many of the new remote sensed platforms allow accurate spatial data to be collected cheaply and efficiently. This is providing the individual researcher or small research grouping with tremendous opportunity to move the science of fluvial geomorphology forward unconstrained to a large degree of the need to secure substantial research funding. Fluvial geomorphologists have never before been in such a liberated position! As techniques and analytical skills continue to improve it is inevitable that Marcus and Fondstad's (2010) prediction that remotely sensed data will revolutionising our understanding of geomorphological form and process will prove true, altering our ideas on the very nature of system functioning in the process.
    Print ISSN: 0197-9337
    Electronic ISSN: 1096-9837
    Topics: Geography , Geosciences
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-03-13
    Description: Coastal cliff erosion represents a significant geohazard for people and infrastructure. Forecasting future erosion rates is therefore of critical importance to ensuring the resiliency of coastal communities. We use high precision monitoring of chalk cliffs at Telscombe, UK to generate monthly mass movement inventories between August 2016 and July 2017. Frequency-magnitude analysis of our inventories demonstrate negative power law scaling over 7 orders of magnitude and, for the first time, we report statistically significant correlations between significant wave height (H s ) and power law scaling coefficients (r 2 values of 0.497 and 0.590 for β and s respectively). Applying these relationships allows for a quantitative method to predict erosion at the site based on H s probabilities and sea level forecasts derived from the UKCP09 medium emission climate model (A1B). Monte-Carlo simulations indicate a range of possible erosion scenarios over 70 years (2020-2090) and we assess the impact these may have on the A259 coastal road which runs proximal to the cliffs. Results indicate a small acceleration in erosion compared to those based on current conditions with the most likely scenario at the site being 21.7 m of cliff recession by 2090. However, low-probability events can result in recession an order of magnitude higher in some scenarios. In the absence of negative feedbacks, we estimate an ~11% chance that the A259 will be breached by coastal erosion by 2090.
    Print ISSN: 0197-9337
    Electronic ISSN: 1096-9837
    Topics: Geography , Geosciences
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-03-07
    Description: The present study demonstrates a spatially distributed application of field-scale annual soil loss model the modified-MMF (MMMF) to a large watershed using hydrological routing techniques, remote sensing data and geospatial technologies. In this study, the MMMF model is implemented after incorporating the corrections suggested in recent literature along with appropriate modifications in the model to suit the agro-climatological conditions prevailing in most parts of India. Sensitivity analysis carried out through an Average Linear Sensitivity approach indicates that the model outputs are highly sensitive to soil moisture (MS), bulk density (BD), effective hydraulic depth (EHD), ground cover (GC) and settling velocity for clay (VS c ). During calibration and validation, the performance evaluation statistics are mostly in the range of very good to satisfactory for both runoff and soil loss at the watershed outlet. Even spatial validation of the results of intermediate processes in the water phase and the sediment phase, though qualitatively, seems to be reasonable and rational. Furthermore, the soil erosion severity analysis for different land-use existing in the watershed indicates that about 90% of the watershed area especially those occupied by agricultural lands are vulnerable to the long-term effects of soil erosion.
    Print ISSN: 0197-9337
    Electronic ISSN: 1096-9837
    Topics: Geography , Geosciences
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-03-07
    Description: It is widely recognized nowadays that there are at least two different phases of bed-load sediment transport in gravel-bed rivers. However, the transition between these phases is still poorly or subjectively defined, especially at bends in rivers, where cross-stream sediment transport can strongly influence changes in the texture of the transported sediment. In this paper, we use piecewise models to identify objectively, at two points in the cross-section of a river bend, the discharge at which the transition between bed-load transport phases occurs. Piecewise models were applied to a new bed-load data set collected during a wide range of discharges while analysing the associated changes in sediment texture. Results allowed the identification of two well-differentiated phases of sediment transport (phase I and phase II), with a breakpoint located around bankfull discharge. Associated with each phase there was a change in bed-load texture. In phase I there was non-dominance in the transport of fine or coarse fractions at a particular sampling point; but in phase II bed-load texture was strongly linked to the position of the sampling point across the channel. In this phase, fine particles tended to be transported to the inner bank, while coarse sizes were transferred throughout the middle parts of the channel. Moreover, bed-load texture at the inner sampling point became bimodal while the transport of pebble-sized particles was increasing in the central parts of the river channel. It is suggested that this general pattern may be related both to secondary currents, which transfer finer particles from the outer to the inner bank, and to the progressive dismantling of the riverbed surface layer.
    Print ISSN: 0197-9337
    Electronic ISSN: 1096-9837
    Topics: Geography , Geosciences
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-03-07
    Description: Agricultural land management requires strategies to reduce impacts on soil and water resources while maintaining food production. Models that capture the effects of agricultural and conservation practices on soil erosion and sediment delivery can help to address this challenge. Historic records of climatic variability and agricultural change over the last century also offer valuable information for establishing extended baselines against which to evaluate management scenarios. Here, we present an approach that combines centennial-scale reconstructions of climate and agricultural land cover with modelling across four lake catchments in the UK where radiometric dating provides a record of lake sedimentation. We compare simulations using MMF-TWI, a catchment-scale model developed for humid agricultural landscapes that incorporates representation of seasonal variability in vegetation cover, soil water balance, runoff and sediment contributing areas. MMF-TWI produced mean annual sediment exports within 9-20% of sediment core-based records without calibration and using guide parameter values to represent vegetation cover. Simulations of land management scenarios compare upland afforestation and lowland field-scale conservation measures to reconstructed historic baselines. Oak woodland versus conifer afforestation showed similar reductions in mean annual surface runoff (8-16%) compared to current moorland vegetation but a larger reduction in sediment exports (26-46 vs. 4-30%). Riparian woodland buffers reduced upland sediment yields by 15-41%, depending on understorey cover levels, but had only minor effect on surface runoff. Planting of winter cover crops in the lowland arable catchment halved historic sediment exports. Permanent grass margins applied to sets of arable fields across 15% or more of the catchment led to further significant reduction in exports. Our findings show the potential for reducing sediment delivery at the catchment scale with land management interventions. We also demonstrate how MMF-TWI can support hydrologically-informed decision making to better target conservation measures in humid agricultural environments.
    Print ISSN: 0197-9337
    Electronic ISSN: 1096-9837
    Topics: Geography , Geosciences
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-03-07
    Description: Post-wildfire runoff and erosion are major concerns in fire-prone landscapes around the world, but these hydro-geomorphic responses have been found to be highly variable and difficult to predict. Some variation has been observed to be associated with landscape aridity, which in turn can influence soil hydraulic properties. However, to date there has been no attempt to systematically evaluate the apparent relations between aridity and post-wildfire runoff. In this study, five sites in a wildfire burned area were instrumented with rainfall-runoff plots across an aridity index (AI) gradient. Surface runoff and effective rainfall were measured over 10 months to allow investigation of short- (peak runoff) and longer-term (runoff ratio) runoff characteristics, over the recovery period. The results show a systematic and strong relation between aridity and post-wildfire runoff ratio. The average runoff ratio at the driest AI site (33.6%) was two orders of magnitude higher than at the wettest AI site (0.3%). Peak runoff also increased with AI, with up to a thousand fold difference observed during one event between the driest and wettest sites. The relation between AI, peak 15-minute runoff ( Q 15 ) and peak 15-minute rainfall intensity ( I 15 ) (both in mm h -1 ) could be quantified by the equation: peakRR = 0.1086I peak AI 2.691 Q 15  = 0.1086 I 15  ×  AI 2.691 (0.6〈AI〈1.8, 0〈 I 15 〈45) (adjusted r 2 = 0.84). The runoff ratios remained higher at drier AI sites (AI 1.24 and 1.80) throughout the monitoring period, suggesting higher AI also lengthens the window of disturbance after wildfire. The strong quantifiable link which this study has determined between AI and post-wildfire surface runoff could greatly improve our capacity to predict the magnitude and location of hydro-geomorphic processes such as flash floods and debris flows following wildfire, and may help explain aridity related patterns of soil properties in complex upland landscapes.
    Print ISSN: 0197-9337
    Electronic ISSN: 1096-9837
    Topics: Geography , Geosciences
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...