GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1,603)
Document type
  • Articles  (1,603)
Source
Years
Topic
  • 1
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2018-04-04
    Description: The most commonly used evaluation metrics for quality assessment of retinal vessel segmentation are sensitivity, specificity, and accuracy, which are based on pixel-to-pixel matching. However, due to the inter-observer problem that vessels annotated by different observers vary in both thickness and location, pixel-to-pixel matching is too restrictive to fairly evaluate the results of vessel segmentation. In this paper, the proposed skeletal similarity metric is constructed by comparing the skeleton maps generated from the reference and the source vessel segmentation maps. To address the inter-observer problem, instead of using a pixel-to-pixel matching strategy, each skeleton segment in the reference skeleton map is adaptively assigned with a searching range whose radius is determined based on its vessel thickness. Pixels in the source skeleton map located within the searching range are then selected for similarity calculation. The skeletal similarity consists of a curve similarity, which measures the structural similarity between the reference and the source skeleton maps and a thickness similarity, which measures the thickness consistency between the reference and the source vessel segmentation maps. In contrast to other metrics that provide a global score for the overall performance, we modify the definitions of true positive, false negative, true negative, and false positive based on the skeletal similarity, based on which sensitivity, specificity, accuracy, and other objective measurements can be constructed. More importantly, the skeletal similarity metric has better potential to be used as a pixelwise loss function for training deep learning models for retinal vessel segmentation. Through comparison of a set of examples, we demonstrate that the redefined metrics based on the skeletal similarity are more effective for quality evaluation, especially with greater tolerance to the inter-observer problem.
    Print ISSN: 0278-0062
    Electronic ISSN: 1558-254X
    Topics: Medicine , Technology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2018-04-04
    Description: We present a novel approach to the problem of neuron segmentation in image volumes acquired by an electron microscopy. Existing methods, such as agglomerative or correlation clustering, rely solely on boundary evidence and have problems where such an evidence is lacking (e.g., incomplete staining) or ambiguous (e.g., co-located cell and mitochondria membranes). We investigate if these difficulties can be overcome by means of sparse region appearance cues that differentiate between pre- and postsynaptic neuron segments in mammalian neural tissue. We combine these cues with the traditional boundary evidence in the asymmetric multiway cut (AMWC) model, which simultaneously solves the partitioning and the semantic region labeling problems. We show that AMWC problems over superpixel graphs can be solved to global optimality with a cutting plane approach, and that the introduction of semantic class priors leads to significantly better segmentations.
    Print ISSN: 0278-0062
    Electronic ISSN: 1558-254X
    Topics: Medicine , Technology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-04-04
    Description: Recent advances in imaging genetics produce large amounts of data including functional MRI images, single nucleotide polymorphisms (SNPs), and cognitive assessments. Understanding the complex interactions among these heterogeneous and complementary data has the potential to help with diagnosis and prevention of mental disorders. However, limited efforts have been made due to the high dimensionality, group structure, and mixed type of these data. In this paper, we present a novel method to detect conditional associations between imaging genetics data. We use projected distance correlation to build a conditional dependency graph among high-dimensional mixed data, and then use multiple testing to detect significant group level associations (e.g., regions of interest-gene). In addition, we introduce a scalable algorithm based on orthogonal greedy algorithm, yielding the greedy projected distance correlation (G-PDC). This can reduce the computational cost, which is critical for analyzing large volume of imaging genomics data. The results from our simulations demonstrate a higher degree of accuracy with G-PDC than distance correlation, Pearson’s correlation, and partial correlation, especially when the correlation is nonlinear. Finally, we apply our method to the Philadelphia Neurodevelopmental data cohort with 866 samples including fMRI images and SNP profiles. The results uncover several statistically significant and biologically interesting interactions, which are further validated with many existing studies. The MATLAB code is available at https://sites.google.com/site/jianfang86/gPDC .
    Print ISSN: 0278-0062
    Electronic ISSN: 1558-254X
    Topics: Medicine , Technology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-04-04
    Description: Automated 3-D breast ultrasound has been proposed as a complementary modality to mammography for early detection of breast cancers. To facilitate the interpretation of these images, computer aided detection systems are being developed in which mass segmentation is an essential component for feature extraction and temporal comparisons. However, automated segmentation of masses is challenging because of the large variety in shape, size, and texture of these 3-D objects. In this paper, the authors aim to develop a computerized segmentation system, which uses a seed position as the only priori of the problem. A two-stage segmentation approach has been proposed incorporating shape information of training masses. At the first stage, a new adaptive region growing algorithm is used to give a rough estimation of the mass boundary. The similarity threshold of the proposed algorithm is determined using a Gaussian mixture model based on the volume and circularity of the training masses. In the second stage, a novel geometric edge-based deformable model is introduced using the result of the first stage as the initial contour. In a data set of 50 masses, including 38 malignant and 12 benign lesions, the proposed segmentation method achieved a mean Dice of 0.74 ± 0.19 which outperformed the adaptive region growing with a mean Dice of 0.65 ± 0.2 (p-value < 0.02). Moreover, the resulting mean Dice was significantly (p-value < 0.001) better than that of the distance regularized level set evolution method (0.52 ± 0.27). The supervised method presented in this paper achieved accurate mass segmentation results in terms of Dice measure. The suggested segmentation method can be utilized in two aspects: 1) to automatically measure the change in volume of breast lesions over time and 2) to extract features for a computer aided detection or diagnosis system.
    Print ISSN: 0278-0062
    Electronic ISSN: 1558-254X
    Topics: Medicine , Technology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-04-04
    Description: Positron emission tomography (PET) is a functional imaging modality widely used in oncology, cardiology, and neuroscience. It is highly sensitive, but suffers from relatively poor spatial resolution, as compared with anatomical imaging modalities, such as magnetic resonance imaging (MRI). With the recent development of combined PET/MR systems, we can improve the PET image quality by incorporating MR information into image reconstruction. Previously, kernel learning has been successfully embedded into static and dynamic PET image reconstruction using either PET temporal or MRI information. Here, we combine both PET temporal and MRI information adaptively to improve the quality of direct Patlak reconstruction. We examined different approaches to combine the PET and MRI information in kernel learning to address the issue of potential mismatches between MRI and PET signals. Computer simulations and hybrid real-patient data acquired on a simultaneous PET/MR scanner were used to evaluate the proposed methods. Results show that the method that combines PET temporal information and MRI spatial information adaptively based on the structure similarity index has the best performance in terms of noise reduction and resolution improvement.
    Print ISSN: 0278-0062
    Electronic ISSN: 1558-254X
    Topics: Medicine , Technology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2018-04-04
    Description: Ultrafast ultrasound imaging using plane or diverging waves, instead of focused beams, has advanced greatly the development of novel ultrasound imaging methods for evaluating tissue functions beyond anatomical information. However, the sonographic signal-to-noise ratio (SNR) of ultrafast imaging remains limited due to the lack of transmission focusing, and thus insufficient acoustic energy delivery. We hereby propose a new ultrafast ultrasound imaging methodology with cascaded dual-polarity waves (CDWs), which consists of a pulse train with positive and negative polarities. A new coding scheme and a corresponding linear decoding process were thereby designed to obtain the recovered signals with increased amplitude, thus increasing the SNR without sacrificing the frame rate. The newly designed CDW ultrafast ultrasound imaging technique achieved higher quality B-mode images than coherent plane-wave compounding (CPWC) and multiplane wave (MW) imaging in a calibration phantom, ex vivo pork belly, and in vivo human back muscle. CDW imaging shows a significant improvement in the SNR (10.71 dB versus CPWC and 7.62 dB versus MW), penetration depth (36.94% versus CPWC and 35.14% versus MW), and contrast ratio in deep regions (5.97 dB versus CPWC and 5.05 dB versus MW) without compromising other image quality metrics, such as spatial resolution and frame rate. The enhanced image qualities and ultrafast frame rates offered by CDW imaging beget great potential for various novel imaging applications.
    Print ISSN: 0278-0062
    Electronic ISSN: 1558-254X
    Topics: Medicine , Technology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2018-04-04
    Description: Brain tumors are the most common malignant neurologic tumors with the highest mortality and disability rate. Because of the delicate structure of the brain, the clinical use of several commonly used biopsy diagnosis is limited for brain tumors. Radiomics is an emerging technique for noninvasive diagnosis based on quantitative medical image analyses. However, current radiomics techniques are not standardized regarding feature extraction, feature selection, and decision making. In this paper, we propose a sparse representation-based radiomics (SRR) system for the diagnosis of brain tumors. First, we developed a dictionary learning- and sparse representation-based feature extraction method that exploits the statistical characteristics of the lesion area, leading to fine and more effective feature extraction compared with the traditional explicitly calculation-based methods. Then, we set up an iterative sparse representation method to solve the redundancy problem of the extracted features. Finally, we proposed a novel multi-feature collaborative sparse representation classification framework that introduces a new coefficient of regularization term to combine features from multi-modal images at the sparse representation coefficient level. Two clinical problems were used to validate the performance and usefulness of the proposed SRR system. One was the differential diagnosis between primary central nervous system lymphoma (PCNSL) and glioblastoma (GBM), and the other was isocitrate dehydrogenase 1 estimation for gliomas. The SRR system had superior PCNSL and GBM differentiation performance compared with some advanced imaging techniques and yielded 11% better performance for estimating IDH1 compared with the traditional radiomics methods.
    Print ISSN: 0278-0062
    Electronic ISSN: 1558-254X
    Topics: Medicine , Technology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-04-04
    Description: This paper reports on the feasibility of using a quasi-Newton optimization algorithm, limited-memory Broyden-Fletcher-Goldfarb-Shanno with boundary constraints (L-BFGS-B), for penalized image reconstruction problems in emission tomography (ET). For further acceleration, an additional preconditioning technique based on a diagonal approximation of the Hessian was introduced. The convergence rate of L-BFGS-B and the proposed preconditioned algorithm (L-BFGS-B-PC) was evaluated with simulated data with various factors, such as the noise level, penalty type, penalty strength and background level. Data of three 18 F-FDG patient acquisitions were also reconstructed. Results showed that the proposed L-BFGS-B-PC outperforms L-BFGS-B in convergence rate for all simulated conditions and the patient data. Based on these results, L-BFGS-B-PC shows promise for clinical application.
    Print ISSN: 0278-0062
    Electronic ISSN: 1558-254X
    Topics: Medicine , Technology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2018-04-04
    Description: We consider the challenges in estimating the state-related changes in brain connectivity networks with a large number of nodes. Existing studies use the sliding-window analysis or time-varying coefficient models, which are unable to capture both smooth and abrupt changes simultaneously, and rely on ad-hoc approaches to the high-dimensional estimation. To overcome these limitations, we propose a Markov-switching dynamic factor model, which allows the dynamic connectivity states in functional magnetic resonance imaging (fMRI) data to be driven by lower-dimensional latent factors. We specify a regime-switching vector autoregressive (SVAR) factor process to quantity the time-varying directed connectivity. The model enables a reliable, data-adaptive estimation of change-points of connectivity regimes and the massive dependencies associated with each regime. We develop a three-step estimation procedure: 1) extracting the factors using principal component analysis, 2) identifying connectivity regimes in a low-dimensional subspace based on the factor-based SVAR model, and 3) constructing high-dimensional state connectivity metrics based on the subspace estimates. Simulation results show that our estimator outperforms $K$ -means clustering of time-windowed coefficients, providing more accurate estimate of time-evolving connectivity. It achieves percentage of reduction in mean squared error by 60% when the network dimension is comparable to the sample size. When applied to the resting-state fMRI data, our method successfully identifies modular organization in the resting-statenetworksin consistencywith other studies. It further reveals changes in brain states with variations across subjects and distinct large-scale directed connectivity patterns across states.
    Print ISSN: 0278-0062
    Electronic ISSN: 1558-254X
    Topics: Medicine , Technology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2018-04-04
    Print ISSN: 0278-0062
    Electronic ISSN: 1558-254X
    Topics: Medicine , Technology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...