GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Publisher
Years
  • 1
    Publication Date: 2011-11-25
    Description: A new approach for calculating downwelling surface long-wave radiation (DSLW) under all sky conditions is presented. The DSLW model (DSLW/UMD) is driven with a synthesis of the latest 1° resolution Moderate-resolution Imaging Spectroradiometer (MODIS) level-3 cloud parameters and information from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim model. The DSLW/UMD's clear-sky contribution is based on the Rapid Radiative Transfer Model (RRTM) and is globally applicable, while a statistical cloud structure model and parametrization determine the cloud contribution to DSLW. Daily averaged estimates of DSLW for 2003–2007 along with four commonly used methods based on radiative transfer (RT) theory are compared against ground measurements from the Baseline Surface Radiation Network (BSRN). It is shown that for all four years, the proposed approach performs as well as or better than the available RT-based models when evaluated against BSRN measurements. Correlation coefficients, absolute value of bias (W m −2 ), and RMSE (W m −2 ) are 0.973 to 0.974, −0.07 to 1.9, and 16.82 to 17.35, respectively. When stratified into Tropical, Midlatitude, and Polar latitudinal belts, largest discrepancies against ground observations are found at high latitudes. Copyright © 2011 Royal Meteorological Society
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-11-25
    Description: A single-Doppler wind retrieval method called the Ground-Based Velocity-Track Display technique (GBVTD) has been developed in recent years to retrieve horizontal circulations of tropical cyclones. The technique is able to retrieve axisymmetric tangential and radial winds, asymmetric tangential winds for wave numbers 1–3, and along-beam mean winds in tropical cyclones. It has been successfully applied to tropical cyclone monitoring and warning. This study explores, for the first time, the assimilation of GBVTD-retrieved winds into a tropical cyclone prediction model, and examines its impact relative to that of directly assimilated radial velocity data. super typhoon Saomai (2006), the most intense landfalling typhoon ever recorded in China, is chosen as the test case, and data from the coastal operational radar at Wenzhou, China, are used. The ARPS 3DVAR system is used to assimilate either the radial velocity data directly or the GBVTD-retrieved winds, at 30 min intervals for 2 hours. The assimilation of the GBVTD-retrieved winds results in much improved structure and intensity analyses of Saomai compared to those in the Japan Meteorological Agency mesoscale reanalysis and compared to the analysis assimilating radial velocity ( V r ) data directly. The ability of the GBVTD method in providing wind information covering the full circle of the inner-core circulation is the primary reason for its superior performance over direct assimilation of V r data; for the latter, the azimuthal data coverage is often incomplete. With the improved initial conditions, the subsequent forecasts of typhoon intensity, track and precipitation are also improved. The improvements to both track and intensity predictions persist over a 12-hour forecast period, which is mostly after landfall. Subjective and quantitative evaluations of the precipitation and circulation patterns show consistent results. A further sensitivity experiment shows that the axisymmetric wind component in the GBVTD retrieval has the dominant impact on the prediction. Copyright © 2011 Royal Meteorological Society
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-11-25
    Description: Taking the spherical geopotential approximation as a starting point, previous work has revealed a quartet of dynamically consistent models of the global atmosphere according to whether approximations of shallow and quasi-hydrostatic type are or are not made. The generalization of this quartet of consistent models is sought within the framework of geopotential surfaces that are zonally symmetric but not assumed to be spherical. The distinction between approximations of shallow and quasi-hydrostatic type is more subtle than in the spherical case: consistent quasi-hydrostatic approximation requires the simultaneous omission of two metric terms that vanish identically in the spherical case (and indeed whenever the vertical metric factor is independent of the meridional coordinate). These two metric terms are not eliminated by the formal process of metric factor approximation by which consistent models of shallow type may be generated. Consistently approximated, hydrostatic, shallow forms are obtained by applying quasi-hydrostatic and shallow approximations successively, and are comparable with the well-known spherical geopotential forms as regards the number and nature of the terms present. The formulation of shallow-water models in non-spherical geopotential coordinates is considered in conclusion. Copyright © 2011 British Crown copyright, the Met Office. Published by John Wiley & Sons Ltd.
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-11-15
    Description: An extensive off-line evaluation of the Noah/Single Layer Urban Canopy Model (Noah/SLUCM) urban land-surface model is presented using data from 15 sites to assess (1) the ability of the scheme to reproduce the surface energy balance observed in a range of urban environments, including seasonal changes, and (2) the impact of increasing complexity of input parameter information. Model performance is found to be most dependent on representation of vegetated surface area cover; refinement of other parameter values leads to smaller improvements. Model biases in net all-wave radiation and trade-offs between turbulent heat fluxes are highlighted using an optimization algorithm. Here we use the Urban Zones to characterize Energy partitioning (UZE) as the basis to assign default SLUCM parameter values. A methodology (FRAISE) to assign sites (or areas) to one of these categories based on surface characteristics is evaluated. Using three urban sites from the Basel Urban Boundary Layer Experiment (BUBBLE) dataset, an independent evaluation of the model performance with the parameter values representative of each class is performed. The scheme copes well with both seasonal changes in the surface characteristics and intra-urban heterogeneities in energy flux partitioning, with RMSE performance comparable to similar state-of-the-art models for all fluxes, sites and seasons. The potential of the methodology for high-resolution atmospheric modelling application using the Weather Research and Forecasting (WRF) model is highlighted. This analysis supports the recommendations that (1) three classes are appropriate to characterize the urban environment, and (2) that the parameter values identified should be adopted as default values in WRF. Copyright © 2011 Royal Meteorological Society
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-11-15
    Description: Ground-based remote-sensing observations from Atmospheric Radiation Measurement (ARM) and Cloud-Net sites are used to evaluate the clouds predicted by a weather forecasting and climate model. By evaluating the cloud predictions using separate measures for the errors in frequency of occurrence, amount when present, and timing, we provide a detailed assessment of the model performance, which is relevant to weather and climate time-scales. Importantly, this methodology will be of great use when attempting to develop a cloud parametrization scheme, as it provides a clearer picture of the current deficiencies in the predicted clouds. Using the Met Office Unified Model, it is shown that when cloud fractions produced by a diagnostic and a prognostic cloud scheme are compared, the prognostic cloud scheme shows improvements to the biases in frequency of occurrence of low, medium and high cloud and to the frequency distributions of cloud amount when cloud is present. The mean cloud profiles are generally improved, although it is shown that in some cases the diagnostic scheme produced misleadingly good mean profiles as a result of compensating errors in frequency of occurrence and amount when present. Some biases remain when using the prognostic scheme, notably the underprediction of mean ice cloud fraction due to the amount when present being too low, and the overprediction of mean liquid cloud fraction due to the frequency of occurrence being too high. Copyright © 2011 Royal Meteorological Society and British Crown Copyright, the Met Office
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-11-15
    Description: A latitude–longitude grid is used by almost all operational atmospheric forecast models, and many research models. However, it is expected that the advantages of a latitude–longitude grid will become outweighed on massively parallel computers by data-communication bottlenecks. There is therefore renewed interest in quasi-uniform alternatives. This review surveys and assesses previously proposed horizontal grids for modelling the atmosphere over the sphere. Aspects of numerical accuracy likely to be affected by grid structure are discussed; particular attention is paid to computational modes and grid imprinting. Computational modes are potentially very serious, since they may be excited in realistic applications by boundary conditions, nonlinearity, physical forcing, and data assimilation. The geometry of polyhedra is reviewed due to its relation to numerical degrees of freedom, and hence to numerical wave dispersion and the possible existence of computational modes. All grids proposed to date have known problems or issues that merit further investigation. Orthogonal logically rectangular grids may be generated using conformal maps, but these suffer from singularities and resolution clustering. Resolution clustering may be avoided by using overset grids, but there are potential issues associated with the overlap regions. Alternatively, resolution clustering may be avoided, whilst retaining a logically rectangular grid, by giving up orthogonality; however, existing numerical schemes exploit orthogonality to obtain various properties thought to be important for accuracy, and it is not yet known whether these can also be obtained on non-orthogonal grids. Quasi-uniformity and orthogonality can be obtained without resolution clustering or overlaps by using non-quadrilateral grid cells, such as triangles, or pentagons and hexagons. However, when a staggered placement of variables is used to minimise dispersion errors for fast waves, non-quadrilateral grids support computational modes. In view of the lack of a single ideal grid, several topics meriting further investigation are identified. Copyright © 2011 Royal Meteorological Society and British Crown Copyright, the Met Office
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-11-15
    Description: The assimilation of observations with a forecast is often heavily influenced by the description of the error covariances associated with the forecast. When a temperature inversion is present at the top of the boundary layer (BL), a significant part of the forecast error may be described as a vertical positional error (as opposed to amplitude error normally dealt with in data assimilation). In these cases, failing to account for positional error explicitly is shown to result in an analysis for which the inversion structure is erroneously weakened and degraded. In this article, a new assimilation scheme is proposed to explicitly include the positional error associated with an inversion. This is done through the introduction of an extra control variable to allow position errors in the a priori to be treated simultaneously with the usual amplitude errors. This new scheme, referred to as the ‘floating BL scheme’, is applied to the one-dimensional (vertical) variational assimilation of temperature. The floating BL scheme is tested with a series of idealised experiments and with real data from radiosondes. For each idealised experiment, the floating BL scheme gives an analysis which has the inversion structure and position in agreement with the truth, and outperforms the assimilation which accounts only for forecast amplitude error. When the floating BL scheme is used to assimilate a large sample of radiosonde data, its ability to give an analysis with an inversion height in better agreement with that observed is confirmed. However, it is found that the use of Gaussian statistics is an inappropriate description of the error statistics of the extra control variable. This problem is alleviated by incorporating a non-Gaussian description of the new control variable in the new scheme. Anticipated challenges in implementing the scheme operationally are discussed towards the end of the article. Copyright © 2011 Royal Meteorological Society and British Crown Copyright, the Met Office
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-11-01
    Description: The idea is proposed of an analysis ensemble of deterministic, model-independent analyses. The ensemble is based on random perturbations of irregularly distributed observations. The purpose of implementing an analysis ensemble is to define uncertainties in analysis fields due to their observational background and errors. As one possible application, the uncertainty information could, in future, be used to define confidence intervals for verification measures depending on the reference data. The analysis system VERA and a high-resolution Central European observation network are used as a testbed for the development of the methodology. Several approaches for defining weights for the perturbation fields are investigated and compared. Basic weights are determined by a sophisticated data quality control scheme producing error estimates for observations. These estimates can be combined with additional information attempting to include more explicitly the spatial structure of the observed fields in the ensemble. The information is provided by either a principal component analysis of a time series of analysis fields or a 2D-discrete wavelet transform. Strengths and weaknesses of the different adjustments for ensemble analysis perturbations are discussed. It is shown that perturbations provided by the wavelet-based approach lead to useful results for several meteorological parameters tested. Copyright © 2011 Royal Meteorological Society
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-11-01
    Description: A new tropopause definition involving a flow-dependent blending of the traditional thermal tropopause with one based on potential vorticity has been developed and applied to the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalyses (ERA), ERA-40 and ERA-Interim. Global and regional trends in tropopause characteristics for annual and solsticial seasonal means are presented here, with emphasis on significant results for the newer ERA-Interim data for 1989–2007. The global-mean tropopause is rising at a rate of 47 m per decade, with pressure falling at 1.0 hPa per decade and temperature falling at 0.18 K per decade. The Antarctic tropopause shows decreasing heights, warming and increasing westerly winds. The Arctic tropopause also shows a warming, but with decreasing westerly winds. In the Tropics the trends are small, but at the latitudes of the subtropical jets they are almost double the global values. It is found that these changes are mainly concentrated in the eastern hemisphere. Previous and new metrics for the rate of broadening of the Tropics, based on both height and wind, give trends in the range 0.9–2.2° per decade. For ERA-40 the global height and pressure trends for the period 1979–2001 are similar: 39 m per decade and −0.8 hPa per decade. These values are smaller than those found from the thermal tropopause definition with this dataset, as was used in most previous studies. Copyright © 2011 Royal Meteorological Society
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-11-01
    Description: We present a novel cyclone identification and tracking method that explicitly recognizes ‘multicentre cyclones’ (MCCs), defined as a cyclonic system with two or three sea-level pressure minima within its outermost contour. The method allows for the recognition of cyclone merger and splitting events in a natural way, and provides a consistent measure of the cyclone extent. Using the ERA-Interim reanalysis dataset, we compute a climatology using this method and show that MCCs occur in about 32 of all cyclone tracks and are much more prevalent in more intense storms. We also show that the method permits reconnection of tracks that would have been spuriously split using a conventional method. We present spatial maps of cyclone mergers, splitting, genesis and lysis using the method and also compute statistics of precipitation falling within cyclones, showing that it is strongly concentrated in the most intense cyclones. Copyright © 2011 Royal Meteorological Society
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...