GLORIA

GEOMAR Library Ocean Research Information Access

Sprache
Bevorzugter Suchindex
Ergebnisse pro Seite
Sortieren nach
Sortierung
Anzahl gespeicherter Suchen in der Suchhistorie
E-Mail-Adresse
Voreingestelltes Exportformat
Voreingestellte Zeichencodierung für Export
Anordnung der Filter
Maximale Anzahl angezeigter Filter
Autovervollständigung
Themen (Es wird nur nach Zeitschriften und Artikeln gesucht, die zu einem oder mehreren der ausgewählten Themen gehören)
Feed-Format
Anzahl der Ergebnisse pro Feed
feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    San Diego :Elsevier Science & Technology,
    Schlagwort(e): Calcium in the body. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (417 pages)
    Ausgabe: 1st ed.
    ISBN: 9780080552736
    Serie: Issn Series
    Sprache: Englisch
    Anmerkung: Front Cover -- Calcium Regulation of Cellular Function -- Copyright Page -- Contents -- Contributing Authors -- Preface -- Chapter 1. Intracellular Calcium Waves -- Chapter 2. Regulation of Calcium Channels in the Heart -- Chapter 3. Determinants that Govern High Affinity Calcium Binding -- Chapter 4. Calcium Regulation of Smooth Muscle Contractile Proteins -- Chapter 5. Calcium-Dependent Protein Kinases in Learning and Memory -- Chapter 6. Calcium-Dependent Regulation of Protein Synthesis -- Chapter 7. Calcium Regulation of Gene Expression -- Chapter 8. Calcium Regulation of Apoptosis -- Chapter 9. Role of Calcium in T-Lymphocyte Activation -- Chapter 10. Regulation of the Cell Division Cycle by Inositol Triphosphate and the Calcium Signalling Pathway -- Chapter 11. The Regulation of Calcium in Paramecium -- Chapter 12. Calcium in Saccharomyces cerevisiae -- Chapter 13. Calcium Regulation of Drosophila Development -- Subject Index.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    San Diego :Elsevier Science & Technology,
    Schlagwort(e): Periodicals. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (339 pages)
    Ausgabe: 1st ed.
    ISBN: 9780080526454
    Serie: Issn Series
    DDC: 571.6
    Sprache: Englisch
    Anmerkung: Front Cover -- Ion Channel Regulation -- Copyright Page -- Contents -- Contributing Authors -- Prologue -- Part I: Protein Phosphorylation -- Chapter 1. Modulation of Ion Channels by Protein Phosphorylation: How the Brain Works -- Chapter 2. Regulation of Voltage-Sensitive Sodium and Calcium Channels by Phosphorylation -- Chapter 3. Regulation of Ligand-Gated Ion Channels by Protein Phosphorylation -- Chapter 4. Regulation of CFTR C1-Ion Channels by Phosphorylation and Dephosphorylation -- Chapter 5. Ion Channels as Physiological Effectors for Growth Factor Receptor and Ras/ERK Signaling Pathways -- Part II: Closely Associated Proteins -- Chapter 6. Voltage-Dependent Modulation of N-Type Calcium Channels: Role of G Protein Subunits -- Chapter 7. L-Type Calcium Channel Modulation -- Chapter 8. G Protein Gated Potassium Channels -- Chapter 9. The Company They Keep: Ion Channels and Their Intracellular Regulatory Partners -- Part III: Second Messengers -- Chapter 10. Cyclic Nucleotide Gated Channels -- Chapter 11. Cyclic GMP and Ion Channel Regulation -- Chapter 12. Store-Operated Calcium Channels -- Subject Index.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © Society for Neuroscience, 2005. This article is posted here by permission of Society for Neuroscience for personal use, not for redistribution. The definitive version was published in Journal of Neuroscience 25 (2005): 2658-2669, doi:10.1523/JNEUROSCI.4278-04.2005.
    Beschreibung: Synapsins are a family of neuron-specific phosphoproteins that regulate neurotransmitter release by associating with synaptic vesicles. Synapsins consist of a series of conserved and variable structural domains of unknown function. We performed a systematic structure-function analysis of the various domains of synapsin by assessing the actions of synapsin fragments on neurotransmitter release, presynaptic ultrastructure, and the biochemical interactions of synapsin. Injecting a peptide derived from domain A into the squid giant presynaptic terminal inhibited neurotransmitter release in a phosphorylation-dependent manner. This peptide had no effect on vesicle pool size, synaptic depression, or transmitter release kinetics. In contrast, a peptide fragment from domain C reduced the number of synaptic vesicles in the periphery of the active zone and increased the rate and extent of synaptic depression. This peptide also slowed the kinetics of neurotransmitter release without affecting the number of docked vesicles. The domain C peptide, as well as another peptide from domain E that is known to have identical effects on vesicle pool size and release kinetics, both specifically interfered with the binding of synapsins to actin but not with the binding of synapsins to synaptic vesicles. This suggests that both peptides interfere with release by preventing interactions of synapsins with actin. Thus, interactions of domains C and E with the actin cytoskeleton may allow synapsins to perform two roles in regulating release, whereas domain A has an actin-independent function that regulates transmitter release in a phosphorylation-sensitive manner.
    Beschreibung: This work was supported by grants from The Fisher Center for Alzheimer’s Disease Research (P.G., F.B.), National Institutes of Health Grants NS-21624 (G.J.A.) and MH39327 (P.G.), the Italian Ministry of Education (F.B.), Consorzio Italiano Biotecnologie (F.B.), and a Ramon y Cajal fellowship (S.H.).
    Schlagwort(e): Synapsin ; Release ; Regulation ; Neurotransmitter ; Actin ; Cytoskeleton ; Depression
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    ISSN: 1471-4159
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: Abstract: VAMP/synaptobrevin (SYB), an integral membrane protein of small synaptic vesicles, is specifically cleaved by tetanus neurotoxin and botulinum neurotoxins B, D, F, and G and is thought to play an important role in the docking and/or fusion of synaptic vesicles with the presynaptic membrane. Potential phosphorylation sites for various kinases are present in SYB sequence. We have studied whether SYB is a substrate for protein kinases that are present in nerve terminals and known to modulate neurotransmitter release. SYB can be phosphorylated within the same vesicle by endogenous Ca2+/calmodulin-dependent protein kinase II (CaMKII) associated with synaptic vesicles. This phosphorylation reaction occurs rapidly and involves serine and threonine residues in the cytoplasmic region of SYB. Similarly to CaMKII, a casein kinase II (CasKII) activity copurifying with synaptic vesicles is able to phosphorylate SYB selectively on serine residues of the cytoplasmic region. This phosphorylation reaction is markedly stimulated by sphingosine, a sphingolipid known to activate CasKII and to inhibit CaMKII and protein kinase C. The results show that SYB is a potential substrate for protein kinases involved in the regulation of neurotransmitter release and open the possibility that phosphorylation of SYB plays a role in modulating the molecular interactions between synaptic vesicles and the presynaptic membrane.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 60 (1993), S. 0 
    ISSN: 1471-4159
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: Abstract: ARPP-21 is a cyclic AMP-regulated phosphoprotein (Mr= 21,000) that has a distribution in brain similar to that of DARPP-32 (dopamine- and cyclic AMP-regulated phosphoprotein, Mr= 32,000). It is enriched in the medium-sized spiny neurons in the striatum and in the striatonigral nerve terminals in the pars reticulata of the substantia nigra. The present study shows that dopamine D1 agonist SKF 38393 increases the state of phosphorylation of ARPP-21 by 26% in nigral slices and that pretreatment of the slices with D1 antagonist SCH 23390 blocks this effect. These results demonstrate that ARPP-21 is a dopamine-regulated phosphoprotein. Because D1 receptors are localized on nerve terminals of striatonigral pathway, the phosphorylation of ARPP-21 is likely to mediate some of the intracellular effects of dopamine on these terminals.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    ISSN: 1471-4159
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: Abstract: When brain tissue is subjected to subcellular fractionation, both calcium/diacylglycerol-depenpent protein kinase (protein kinase C) and an 87-kiIodalton (kDa) protein substrate for this enzyme are enriched in the crude nerve terminal fraction. The present study, using chen|iical and surgical lesions of neurons in the rat neostriatum and substantia nigra, has examined whether the 87-kDa protein is colocalized with protein kinase C in identified neurons and nerve terminals. Our results show that, in the basal gaijglia, protein kinase C is highly enriched in local striatal neurons and the striatonigral fibers and terminals. In contrast, the 87-kDa protein appears to be widely and evenly distributed in both neuronal and nonneuronal cells. The 87-kDa protein may therefore mediate functions of protein kinase C not restricted to nerve terminals.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 52 (1989), S. 0 
    ISSN: 1471-4159
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: Abstract: Brief freezing as a means of transiently permeabilizing synaptosomes was explored. Rat brain synaptosomes frozen and thawed in the presence of 5% dimethyl sulfoxide, a cryoprotectant, were shown to release, in a calcium-dependent manner, previously accumulated [3H]norepinephrine and [14C]acetylcholine in response to elevated [K+]o. In addition, synaptosomes subjected to freeze/thaw were shown to retain their ability to exhibit resting protein phosphorylation, as well as stimulated protein phosphorylation occurring in response to calcium influx. Brief freezing of synaptosomes in the presence of [γ-32P]ATP and either the catalytic subunit of cyclic AMP-dependent protein kinase or calcium/calmodulin-dependent protein kinase II rendered the synaptosomal interior accessible to these agents, as reflected by the phosphorylation of substrate proteins, such as synapsin I, which reside within the nerve terminal. Inclusion of inhibitors of these protein kinases during freeze/thaw blocked synaptosomal protein phosphorylation, indicating that the inhibitors were also introduced. After freezing, the synaptosomes resealed rapidly and spontaneously, as shown by the inability of any of the agents to elicit an effect on phosphorylation when added at the end of the freezing period. The permeabilization procedure should contribute to an understanding of the functional roles of phosphoproteins, and of their associated protein kinases and protein phosphatases, in nerve terminals.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    ISSN: 1471-4159
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: Abstract: The distribution of inhibitor-1, a cyclic AMP-regulated inhibitor of protein phosphatase-1, was analyzed in various brain regions and peripheral tissues of various species by immunolabeling of sodium dodecyl sulfate-polyacrylamide gel transfers using specific antibodies. The distribution of inhibitor-1 was directly compared to that of DARPP-32, a structurally related cyclic AMP-regulated inhibitor of protein phosphatase-1. In rat CNS, a single immunoreactive protein of Mr 30,000, identified as inhibitor-1, was widely distributed. In contrast, DARPP-32 was highly concentrated in the basal ganglia. Inhibitor-1 was detected in brain tissue from frog (Mr 27,000), turtle (Mr 29,000/33,000), canary (Mr 26,000), pigeon (Mr 28,000), mouse (Mr 30,500), rabbit (Mr 26,500), cow (Mr 27,000), and monkey (Mr 27,500), but not from goldfish. Inhibitor-1 was detected at various levels in most peripheral tissues of the species studied; however, it was not detectable in certain tissues of particular species (e.g., rat and cow liver). DARPP-32 was detected in brain tissue of all the species tested except frog and goldfish, but was not detectable in most peripheral tissues. Both inhibitor-1 and DARPP-32 were concentrated in the cytosol and synaptosomal cytosol of rat striatum. The developmental expressions of inhibitor-1 and DARPP-32 in rat striatum differed: the level of inhibitor-1 peaked in the first postnatal week and then declined by the third postnatal week, whereas the level of DARPP-32 increased to a peak level by the third postnatal week and remained elevated thereafter. Because inhibitor-1 and DARPP-32 have distinct but partially overlapping regional distributions and developmental expression in rat CNS and have distinct tissue distributions in a number of species, it appears that their functions are not fully interchangeable.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 57 (1991), S. 0 
    ISSN: 1471-4159
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: Generation of antibodies and direct protein sequencing were used to identify and characterize proteins associated with highly purified synaptic vesicles from rat brain. A protein doublet of low abundance of 119 and 124 kDa apparent molecular mass [synaptic vesicle-associated phosphoprotein with a molecular mass of 120 kDa (SVAPP-120)] was identified using polyclonal antibodies. SVAPP-120 was found to copurify with synaptic vesicles and to be enriched in the purified synaptic vesicle fraction to the same extent as synapsin I. Like synapsin I, SVAPP-120 is not an integral membrane protein because it was released from synaptic vesicles by high salt concentrations. This protein was demonstrated to be brain specific, and its distribution in various brain regions paralleled the distribution of synapsin I and synaptophysin. During the postnatal development of the rat cortex and cerebellum, its expression correlated with synaptogenesis. SVAPP-120 was demonstrated to be a phosphoprotein both in vivo and in vitro. It was shown to be phosphorylated on serine and to a lesser extent on threonine residues. These results provide evidence that SVAPP-120 represents a novel synaptic vesicle-associated phosphoprotein. In addition, aldolase, a glycolytic enzyme, and αc-adaptin, a clathrin assembly-promoting protein, were identified on purified synaptic vesicles by direct protein sequencing.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 55 (1990), S. 0 
    ISSN: 1471-4159
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: Abstract: DARPP-32, a dopamine- and cyclic AMP-regulated phosphoprotein of Mr 32,000, is phosphorylated in vitro by casein kinase II at a site which is also phosphorylated in intact cells. In the present study, we show that a protein kinase activity, present in caudate-putamen cytosol, phosphorylates DARPP-32 on a seryl residue located on the same thermolytic peptide that is phosphorylated by purified casein kinase II. This DARPP-32 serine kinase was indistinguishable from casein kinase II on the basis of a number of biochemical criteria. Excitotoxic lesions of the caudate-putamen and immunocytochemistry revealed the presence of casein kinase II in the medium-sized striatonigral neurons which are known to contain DARPP-32. Casein kinase II activity was high in all rat brain regions studied, and casein kinase II-like immunoreactivity was detected in most brain neurons, although some neuronal populations (e.g., cortical pyramidal cells and large striatal neurons) were stained more intensely than others. In rat caudate-putamen, 45% of the total casein kinase II activity was in the cytosol and 20% in the synaptosomal fraction. In mouse cerebral cortex and caudate-putamen, casein kinase II activity was high at embryonic day 16, and remained elevated during development. In addition to DARPP-32, several major substrates for casein kinase II were observed specifically in brain, but not in liver extracts. The high activity of casein kinase II in brain from the embryonic period to adult age and the existence of a number of specific substrates suggest that this enzyme may play an important role in both developing and mature brain, possibly in modulating the responsiveness of target proteins to various extracellular signals.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...