GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2000
    In:  Journal of Physical Oceanography Vol. 30, No. 6 ( 2000-06), p. 1232-1244
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 30, No. 6 ( 2000-06), p. 1232-1244
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2000
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 90, No. 5 ( 2009-05), p. 657-670
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2009
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2005
    In:  Journal of Physical Oceanography Vol. 35, No. 1 ( 2005-01-01), p. 135-135
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 35, No. 1 ( 2005-01-01), p. 135-135
    Type of Medium: Online Resource
    ISSN: 1520-0485 , 0022-3670
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2005
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Meteorological Society ; 2008
    In:  Journal of Physical Oceanography Vol. 38, No. 2 ( 2008-02-01), p. 337-358
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 38, No. 2 ( 2008-02-01), p. 337-358
    Abstract: The outflow of warm, salty, and dense water from the Red Sea into the western Gulf of Aden is numerically simulated using the Hybrid Coordinate Ocean Model (HYCOM). The pathways of the modeled overflow, temperature, salinity, velocity profiles from stations and across sections, and transport estimates are compared to those observed during the 2001 Red Sea Outflow Experiment. As in nature, the simulated outflow is funneled into two narrow channels along the seafloor. The results from the three-dimensional simulations show a favorable agreement with the observed temperature and salinity profiles along the channels. The volume transport of the modeled overflow increases with the increasing distance from the southern exit of the Bab el Mandeb Strait due to entrainment of ambient fluid, such that the modeled transport shows a reasonable agreement with that estimated from the observations. The initial propagation speed of the outflow is found to be smaller than the estimated interfacial wave speed. The slow propagation is shown to result from the roughness of the bottom topography characterized by a number of depressions that take time to be filled with outflow water. Sensitivities of the results to the horizontal grid spacing, different entrainment parameterizations, and forcing at the source location are investigated. Because of the narrow widths of the approximately 5 km of the outflow channels, a horizontal grid spacing of 1 km or less is required for model simulations to achieve a reasonable agreement with the observations. Comparison of two entrainment parameterizations, namely, TPX and K-profile parameterization (KPP), show that similar results are obtained at 1-km resolution. Overall, the simulation of the Red Sea outflow appears to be more strongly affected by the details of bottom topography and grid spacing needed to adequately resolve them than by parameterizations of diapycnal mixing.
    Type of Medium: Online Resource
    ISSN: 1520-0485 , 0022-3670
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2008
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Meteorological Society ; 2003
    In:  Journal of Physical Oceanography Vol. 33, No. 8 ( 2003-08-01), p. 1846-1869
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 33, No. 8 ( 2003-08-01), p. 1846-1869
    Abstract: Given the motivation that overflow processes, which supply source waters for most of the deep and intermediate water masses in the ocean, pose significant numerical and dynamical challenges for ocean general circulation models, an intercomparison study is conducted between field data collected in the Red Sea overflow and a high-resolution, nonhydrostatic process model. The investigation is focused on the part of the outflow that flows along a long narrow channel, referred to as the “northern channel,” that naturally restricts motion in the lateral direction such that the use of a two-dimensional model provides a reasonable approximation to the dynamics. This channel carries about two-thirds of the total Red Sea overflow transport, after the overflow splits into two branches in the western Gulf of Aden. The evolution of the overflow in the numerical simulations can be characterized in two phases: the first phase is highly time dependent, during which the density front associated with the overflow propagates along the channel. The second phase corresponds to that of a statistically steady state. The primary accomplishment of this study is that the model adequately captures the general characteristics of the system: (i) the gradual thickening of the overflow with downstream distance, (ii) the advection of high salinity and temperature signals at the bottom along the channel with little dilution, and (iii) ambient water masses sandwiched between the overflow and surface mixed layer. To quantify mixing of the overflow with the ambient water masses, an entrainment parameter is determined from the transport increase along the slope and is expressed explicitly as a function of mean slope angle. Bulk Richardson numbers are estimated both from data and model and are related to the entrainment parameter. The range of entrainment parameter and its functional dependence on bulk Richardson number in this study are found to be in reasonable agreement with those reported from various laboratory experiments and that based on measurements of the Mediterranean overflow. The results reveal a complex dynamical interaction between shear-induced mixing and internal waves and illustrate the high computational and modeling requirements for numerical simulation of overflows to capture (at least in part) turbulent transports explicitly.
    Type of Medium: Online Resource
    ISSN: 1520-0485 , 0022-3670
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2003
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Meteorological Society ; 2006
    In:  Journal of Physical Oceanography Vol. 36, No. 9 ( 2006-09-01), p. 1763-1785
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 36, No. 9 ( 2006-09-01), p. 1763-1785
    Abstract: Turbulence in the Red Sea outflow plume in the western Gulf of Aden was observed with an upward-looking, five-beam, 600-kHz acoustic Doppler current profiler (ADCP). The “Bottom Lander” ADCP was deployed on the seafloor in two narrow, topographically confined outflow channels south of Bab el Mandeb for periods of 18–40 h at three locations at 376-, 496-, and 772-m depths. Two deployments were taken during the winter season of maximum outflow from the Red Sea and two in the summer season of minimum outflow. These short-term observations exhibit red velocity spectra with high-frequency fluctuations of typically a few centimeters per second RMS velocity during strong plume flow as well as strong subtidal variations. In one winter season event, the plume flow was reduced by a factor of 4 over an 18-h time span. In variance-preserving form, velocity spectra show a separation at frequencies of 0.3–3 cycles per hour between low-frequency and high-frequency signals. The latter show significant coherence between horizontal and vertical velocity components; hence they carried turbulent stress. Based on a comparison with velocity spectra from atmospheric mixed-layer observations, the authors argue that large variance at frequencies of the order of 1 cph was possibly associated with bottom-generated, upward-propagating internal waves. One coherent feature that matched such waves was observed directly. Higher frequencies correspond to turbulent motions of energy-carrying scales. The turbulent Reynolds stress at heights above the bottom between 4 and 30–40 m was computed for most of the ADCP observations. Near the bottom, the streamwise turbulent stress and the streamwise velocity followed a quadratic drag law with drag coefficients ranging from 0.002 to 0.008. There was also significant spanwise stress, hinting at the three-dimensional nature of the boundary layer flow. The time–height variations of the stress and its spectrum proved to be complex, one of its most striking features being angles of up to ∼40° between the direction of the stress and that of the low-frequency flow. The turbulent shear production and eddy viscosity were also examined. On the technical side, the paper discusses the role of the fifth, center-beam velocity measurements in correcting for instrument tilt along with the effect of beam spreading in the 30° Janus configuration of the “regular” four ADCP beams. Instrumental noise and detection limits for the stress are also established.
    Type of Medium: Online Resource
    ISSN: 1520-0485 , 0022-3670
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2006
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Meteorological Society ; 2005
    In:  Journal of Physical Oceanography Vol. 35, No. 11 ( 2005-11-01), p. 1963-1985
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 35, No. 11 ( 2005-11-01), p. 1963-1985
    Abstract: Hydrographic, direct velocity, and subsurface float observations from the 2001 Red Sea Outflow Experiment (REDSOX) are analyzed to investigate the gravitational and dynamical adjustment of the Red Sea Outflow Water (RSOW) where it is injected into the open ocean in the western Gulf of Aden. During the winter REDSOX cruise, when outflow transport was large, several intermediate-depth salinity maxima (product waters) were formed from various bathymetrically confined branches of the outflow plume, ranging in depth from 400 to 800 m and in potential density from 27.0 to 27.5 σθ, a result of different mixing intensity along each branch. The outflow product waters were not dense enough to sink to the seafloor during either the summer or winter REDSOX cruises, but analysis of previous hydrographic and mooring data and results from a one-dimensional plume model suggest that they may be so during wintertime surges of strong outflow currents, or about 20% of the time during winter. Once vertically equilibrated in the Gulf of Aden, the shallowest RSOW was strongly influenced by mesoscale eddies that swept it farther into the gulf. The deeper RSOW was initially more confined by the walls of the Tadjura Rift, but eventually it escaped from the rift and was advected mainly southward along the continental slope. There was no evidence of a continuous boundary undercurrent of RSOW similar to the Mediterranean Undercurrent in the Gulf of Cadiz. This is explained by considering 1) the variability in outflow transport and 2) several different criteria for separation of a jet at a sharp corner, which indicate that the outflow currents should separate from the boundary where they are injected into the gulf.
    Type of Medium: Online Resource
    ISSN: 1520-0485 , 0022-3670
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2005
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Meteorological Society ; 2005
    In:  Journal of Physical Oceanography Vol. 35, No. 5 ( 2005-05-01), p. 584-600
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 35, No. 5 ( 2005-05-01), p. 584-600
    Abstract: South of the Strait of Bab el Mandeb, saline Red Sea Water flows downslope into the Gulf of Aden mainly along the narrow 130-km-long “Northern Channel” (NC) and the shorter and wider “Southern Channel” (SC). In the NC, the Red Sea plume simultaneously exhibited weak entrainment into a 35–120-m-thick, weakly stratified bottom layer while a 35–285-m-thick interfacial layer above showed signs of vigorous mixing, overturns up to 30 m thick, and extensive zones of gradient Richardson numbers below 1/4. Turbulent overturning scales, or Thorpe scales, are extracted from regular CTD profiles and equated to Ozmidov scales. On this basis, interfacial mixing is quantified in terms of estimated turbulent dissipation rates, vertical turbulent salt flux, and interfacial stress. Even though these estimates are subject to significant uncertainty, they demonstrate the intensity of mixing during strong winter outflow in terms of eddy diffusivities Kρ on the order of 10−2 m2 s−1. The large Kρ occur in strong stratification such that vertical turbulent salt fluxes are also large. Along the NC, relative maxima of Kρ correspond to maxima in the bulk Froude number. Direct short-term measurements of the Reynolds stress just above the seafloor at two locations, one in the NC and one in the SC, allow comparisons of the bottom stress τb with the interfacial turbulent stress τi. The ratio τi/τb shows large scatter in a small sample, with maximum values on the order of 1. An appendix outlines procedures of making and reducing lowered acoustic Doppler current profiler measurements optimized for observing descending plumes.
    Type of Medium: Online Resource
    ISSN: 1520-0485 , 0022-3670
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2005
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Meteorological Society ; 2003
    In:  Journal of Physical Oceanography Vol. 33, No. 9 ( 2003-09), p. 1967-1977
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 33, No. 9 ( 2003-09), p. 1967-1977
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2003
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Meteorological Society ; 2004
    In:  Journal of Physical Oceanography Vol. 34, No. 2 ( 2004-02), p. 505-512
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 34, No. 2 ( 2004-02), p. 505-512
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2004
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...