GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-07-20
    Description: In this study, we present the first comprehensive analyses of the diversity and distribution of marine protist (micro-, nano-, and picoeukaryotes) in the Western Fram Strait, using 454-pyrosequencing and high-pressure liquid chromatography (HPLC) at five stations in summer 2010. Three stations (T1; T5; T7) were influenced by Polar Water, characterized by cold water with lower salinity (〈33) and different extents of ice concentrations. Atlantic Water influenced the other two stations (T6; T9). While T6 was located in the mixed water zone characterized by cold water with intermediate salinity (~33) and high ice concentrations, T9 was located in warm water with high salinity (~35) and no ice-coverage at all. General trends in community structure according to prevailing environmental settings, observed with both methods, coincided well. At two stations, T1 and T7, characterized by lower ice concentrations, diatoms (Fragilariopsis sp., Porosira sp., Thalassiosira spp.) dominated the protist community. The third station (T5) was ice-covered, but has been ice-free for ~4 weeks prior to sampling. At this station, dinoflagellates (Dinophyceae 1, Woloszynskia sp. and Gyrodinium sp.) were dominant, reflecting a post-bloom situation. At station T6 and T9, the protist communities consisted mainly of picoeukaryotes, e.g., Micromonas spp. Based on our results, 454-pyrosequencing has proven to be an adequate tool to provide comprehensive information on the composition of protist communities. Furthermore, this study suggests that a snap-shot of a few, but well-chosen samples can provide an overview of community structure patterns and succession in a dynamic marine environment.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-07-24
    Description: Pelagic zooplankton were monitored from 2000 to 2012 at a permanent location near the Svalbard archipelago, at the boundary between the central Arctic Ocean and the Greenland Sea in the eastern Fram Strait. The temporal results reveal the first evidence of successful reproduction in Arctic waters by an Atlantic pelagic crustacean from temperate waters. The Atlantic hyperid amphipod Themisto compressa is shown to have expanded its range from more southerly and warmer waters from 2004 onwards. Successful reproductive activity by T. compressa in Arctic waters was confirmed in 2011, indicated by the presence of a complete temporal series of developmental stages including ovigerous females and recently hatched juveniles. The Arctic amphipod community is currently in transition and a continuing northward spread of southern invaders could cause a biodiversity shift from large Arctic to smaller Atlantic species.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Global Biogeochemical Cycles, 28 (5). pp. 571-583.
    Publication Date: 2014-08-27
    Description: A critical question regarding the organic carbon cycle in the Arctic Ocean is whether the decline in ice extent and thickness and the associated increase in solar irradiance in the upper ocean will result in increased primary production and particulate organic carbon (POC) export. To assess spatial and temporal variability in POC export, under-ice export fluxes were measured with short-term sediment traps in the northern Laptev Sea in July-August-September 1995, north of the Fram Strait in July 1997, and in the Central Arctic in August–September 2012. Sediment traps were deployed at 2–5 m and 20–25 m under ice for periods ranging from 8.5 to 71 h. In addition to POC fluxes, total particulate matter, chlorophyll a, biogenic particulate silica, phytoplankton, and zooplankton fecal pellet fluxes were measured to evaluate the amount and composition of the material exported in the upper Arctic Ocean. Whereas elevated export fluxes observed on and near the Laptev Sea shelf were likely the combined result of high primary production, resuspension, and release of particulate matter from melting ice, low export fluxes above the central basins despite increased light availability during the record minimum ice extent of 2012 suggest that POC export was limited by nutrient supply during summer. These results suggest that the ongoing decline in ice cover affects export fluxes differently on Arctic shelves and over the deep Arctic Ocean and that POC export is likely to remain low above the central basins unless additional nutrients are supplied to surface waters.
    Type: Article , PeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-07-24
    Description: As part of the HAUSGARTEN long-term observatory, sediment trap deployments were carried out before, during, and after the anomalously warm Atlantic Water inflow observed from 2005 to 2007 in the eastern Fram Strait. Downward export of particulate organic carbon (POC), zooplankton fecal pellet carbon (FPC), and biogenic particulate silica (bPSi) were measured from August 2002 to June 2003 and from July 2004 to July 2008 to indirectly assess the impact of the warm anomaly on phytoplankton and zooplankton communities in the region. Lower and less frequent bPSi fluxes were observed during most of the warm anomaly period, reflecting a shift in phytoplankton community composition towards dominance of small-sized phytoplankton under warmer conditions. Lower FPC fluxes observed concurrently with the lower bPSi fluxes may indicate a decrease in fecal pellet production due to changing feeding conditions. In addition, the export of smaller fecal pellets in fall 2005 and spring 2006 suggests a dominance of smaller zooplankton during the warm anomaly. Nonetheless, bPSi and FPC export always increased in the presence of ice cover in the area above the sediment trap, even during the warm anomaly period, suggesting that sea ice is a key factor influencing the frequency of export events in the eastern Fram Strait. The scarcity of ice over the sampling area in 2005 and 2006 may partly be due to the warm anomaly, although solar radiation and ice drift due to wind stress also govern ice cover extent in the region. Overall, the warm anomaly resulted in a shift in the composition of the export fluxes when associated with an absence of ice cover in the eastern Fram Strait.
    Type: Article , PeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-07-24
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-09-04
    Description: Pteropods are an important component of the zooplankton community and hence of the food web in the Fram Strait. They have a calcareous (aragonite) shell and are thus sensitive in particular to the effects of the increasing CO2 concentration in the atmosphere and the associated changes of pH and temperature in the ocean. In the eastern Fram Strait, two species of thecosome pteropods occur, the cold water-adapted Limacina helicina and the subarctic boreal species Limacina retroversa. Both species were regularly observed in year-round moored sediment traps at ~ 200–300 m depth in the deep-sea long-term observatory HAUSGARTEN (79°N, 4°E). The flux of all pteropods found in the trap samples varied from 〈 20 to ~ 870 specimen m− 2 d− 1 in the years 2000–2009, being lower during the period 2000–2006. At the beginning of the time series, pteropods were dominated by the cold-water-adapted L. helicina, whereas the subarctic boreal L. retroversa was only occasionally found in large quantities (〉 50 m− 2 d− 1). This picture completely changed after 2005/6 when L. retroversa became dominant and total pteropod numbers in the trap samples increased significantly. Concomitant to this shift in species composition, a warming event occurred in 2005/6 and persisted until the end of the study in 2009, despite a slight cooling in the upper water layer after 2007/8. Sedimentation of pteropods showed a strong seasonality, with elevated fluxes of L. helicina from August to November. Numbers of L. retroversa usually increased later, during September/October, with a maximum at the end of the season during December/January. In terms of carbonate export, aragonite shells of pteropods contributed with 11–77% to the annual total CaCO3 flux in Fram Strait. The highest share was found in the period 2007 to 2009, predominantly during sedimentation events at the end of the year. Results obtained by sediment traps occasionally installed on a benthic lander revealed that pteropods also arrive at the seafloor (~ 2550 m) almost simultaneous with their occurrence in the shallower traps. This indicates a rapid downward transport of calcareous shells, which provides food particles for the deep-sea benthos during winter when other production in the upper water column is shut down. The results of our study highlight the great importance of pteropods for the biological carbon pump as well as for the carbonate system in Fram Strait at present, and indicate modifications within the zooplankton community. The results further emphasize the importance of long-term investigation to disclose such changes.
    Type: Article , PeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-03-12
    Description: The Fram Strait is the main gateway for water, heat and sea-ice exchanges between the Arctic Ocean and the North Atlantic. The complex physical environment results in a highly variable primary production in space and time. Previous regional studies have defined key bottom-up (ice cover and stratification from melt water controlling the light availability, and wind mixing and water transport affecting the supply of nutrients) and top-down processes (heterotrophic grazing). In this study, in situ field data, remote sensing and modeling techniques were combined to investigate in detail the influence of melting sea-ice and ocean properties on the development of phytoplankton blooms in the Fram Strait region for the years 1998–2009. Satellite-retrieved chlorophyll-a concentrations from temporarily ice-free zones were validated with contextual field data. These were then integrated per month on a grid size of 20 × 20 km, resulting in 10 grids/fields. Factors tested for their influence on spatial and temporal variation of chlorophyll-a were: sea-ice concentration from satellite and sea-ice thickness, ocean stratification, water temperature and salinity time-series simulated by the ice-ocean model NAOSIM. The time series analysis for those ten ice-free fields showed a regional separation according to different physical processes affecting phytoplankton distribution. At the marginal ice zone the melting sea-ice was promoting phytoplankton growth by stratifying the water column and potentially seeding phytoplankton communities. In this zone, the highest mean chlorophyll concentration averaged for the productive season (April–August) of 0.8 mgC/m3 was observed. In the open ocean the phytoplankton variability was correlated highest to stratification formed by solar heating of the upper ocean layers. Coastal zone around Svalbard showed processes associated with the presence of coastal ice were rather suppressing than promoting the phytoplankton growth. During the twelve years of observations, chlorophyll concentrations significantly increased in the southern part of the Fram Strait, associated with an increase in sea surface temperature and a decrease in Svalbard coastal ice. Highlights • We used combination of satellite, simulated and in situ data for 1998–2009. • Stratification from sea-ice melt resulted in largest CHL at the marginal ice zone. • Stratification caused by solar warming promoted open ocean blooms. • Late retreat of Svalbard shelf ice delayed coastal blooms.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-06-15
    Description: After a short introduction to the physical setting and the history of biological research the pelagic ecosystem of the Kara Sea is described. Main emphasis is on regional aspects of the plankton communities and their seasonal dynamics using mostly data collected between 1996 and 2001. In the zooplankton, for which most data were available, four regional aggregations were separated: (1) the rivers and estuaries of the Southern Kara Sea, (2) the south-western and (3) the central Kara Sea, and (4) the northern troughs and slope. The phytoplankton communities had a similar distribution. To provide components for detailed carbon budgets the regional dynamics of bacterial, phytoplankton and zooplankton biomass and production are described and carbon requirements of bacteria and zooplankton are estimated. For completeness a short literature review on higher trophic levels is included. Finally, recent observations of the pelago-benthic coupling are considered. Estimates of the carbon requirements from the plankton and benthos reveal a large underestimation of primary production, which to date, together with seasonal aspects, shows the largest gap in our knowledge.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-04-11
    Description: The biogeochemistry of the river-sea interface was studied in the Kem' River (the largest river flowing to the White Sea from Karelian coast) estuary and adjacent area of the White Sea onboard the RV "Ekolog" in summer 2001, 2002 and 2003. The study area can be divided into 3 zones: I - the estuary itself, with water depth from 1 to 5m and low salinity in the surface layer (salinity is lower than 0.2psu in the Kem' River and varies from 15 to 20psu in outer part of this zone); II - the intermediate zone with depths from 5 to 10m and salinity at the surface from 16 to 22psu; III - the marine zone with depths from 10 to 29 m and salinity 21-24.5psu. Highest concentrations of the suspended particulate matter (SPM) were registered in the Kem' mouth (5-7mg/l). They sharply decreased to values 〈1mg/l towards the sea. At beginning of July 2001, particulate organic carbon (POC) concentration in the river mouth was 404µg/l and POC content in total SPM was 5.64%. In the marine part of the studied area the POC concentration varied from 132 to 274µg/l and the POC contents in suspended matter increased to 19-52.6%. These studies show, that the majority of riverborne suspended matter in the Kem' estuary deposits near the river mouth within the 20psu isohaline, where sedimentation of the suspended matter takes place. The role of fresh-water phytoplankton species decreases and the role of marine species increases from the river to sea and the percentage of green algae decreases and the role of diatoms increases. The organic carbon (Corg) to nitrogen (N) ratio (Corg/N) in both suspended matter and bottom sediments decreases from the river to the marine part of the mixing zone (from 8.5 to 6.1 in the suspended matter and from 14.6 to 7.5 in the bottom sediments), demonstrating that content of terrestrial-derived organic matter decreases and content of marine organic matter increases from the river mouth to the sea. The Kem' estuary exhibits a similar character of biogeochemial processes as in the large Arctic estuaries, but the scale of these processes (amount of river input of SPM, POC, area of estuaries) is different.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  [Talk] In: Developing Long Term International Collaboration on Methane Hydrate Research and Monitoring in the Arctic Region, 18.-20.02.2009, Horntje (Texel), Netherlands .
    Publication Date: 2019-08-13
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...