GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1751-8369
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geography , Geosciences
    Notes: Phytoplankton dynamics and carbon input into Arctic and sub-Arctic ecosystems were investigated around Svalbard, in summer 1991. Phytoplankton biomass, species composition and dissolved nutrient concentrations were analysed from water samples collected along seven transects. Phytoplankton biomass was low especially to the north (Chlorophyll-a mean 0.3 pg 1- '), where flagellates dominated the communities and only ice-diatoms were present. To the west, the phytoplankton composition was representative of a summer Atlantic community, in a post-bloom state. Zooplankton grazing, mainly by copepods, appeared to be the main control on biomass to the west and north of Svalbard.In the Barents Sea (east of Svalbard), an ice edge bloom was observed (Chlorophyll-a max. 6.8 pgl-') and the ice edge receded at a rate of approximately 1 1 km day-'. The phytoplankton community was represented by marginal ice species, especially Phaeocystis poucherii and Chaeroceros socialis. South of the ice edge, Deep Chlorophyll Maxima (DCM) were observed, as surface waters became progressively nutrient-depleted. In these surface waters, the phytoplankton were predominantly auto- and heterotrophic flagellates.Carbon production measurements revealed high net production (new and regenerated) to the north of the Barents Sea Polar Front (BSPF); it was especially high at the receding ice edge (reaching 1.44gC m-'day-'). To the south, a low level of production was maintained, mainly through regenerative processes.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2056
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Phyto- and protozooplankton were sampled in the upper 10 m of the water column in austral summer during a cruise of RV Polarstern from January 6 to February 20 1985 in the eastern Bransfield Strait vicinity and in the northern, southeastern (off Vestkapp, twice: I and II) and southern Weddell Sea (Vahsel Bay across the Filchner Depression to Gould Bay). The plankton assemblages are discussed in relation to physical, chemical and biological factors in the different geographical areas in summer. Phytoplankton biomass (Phytoplankton carbon, PPC) ranged from 4–194 μg carbon/l and consisted on average of 65% diatoms and 35% autotrophic flagellates. Whereas in the northwest phytoplankton assemblages were dominated by small nanoflagellates (78% of PPC), higher biomass of diatoms (54–94% of PPC) occurred at the other sampling sites. In general autotrophic flagellates and small pennate diatoms dominated at oceanic stations; in neritic areas large centric diatoms prevailed. Chlorophyll a concentrations ranged from 0.25–3.14/μg chl a/l with a mean of 1.13/gmg chlorophyll a/l and an average phytoplankton carbon/chlorophyll a ratio of 39. Protozooplankton biomass (Protozooplankton carbon, PZC) ranged from 0–67 μg carbon/l and consisted of 49% ciliates, 49% heterotrophic dinoflagellates and 2% tintinnids. Heterotrophic dinoflagellates were more important in the northern investigation areas (58%–84% of PZC). Ciliates dominated the protozooplankton in the southeast and south (56%–65% of PZC); higher abundances of tintinnids were observed only in the south (11% of PZC). The most remarkable feature of the surface waters was the high protozooplankton biomass: protozooplankton amounted to 25% on an average of the combined biomass of PPC plus PZC for the entire investigation period. Protozoan biomass in the southeastern and southern Weddell Sea occasionally exceeded phytoplankton biomass. Temperature, salinity, and inorganic nutrients were generally lower in the southern regions; at most of these stations a meltwater layer occurred in the upper meters of the water column. We suggest that this physical regime allows a well developed summer system with a high proportion of heterotrophic microplankton. In the eastern Bransfield Strait, in the northern Weddell Sea and close to the coast off Vestkapp (I), however, early summer conditions occurred with less protozooplankton contribution.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2056
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  The development of the phytoplankton bloom and its relation to water column stabilisation during the transition from early to high summer (of 1991) in the seasonally ice-covered zone of the Barents Sea were studied from a meridional transect of repeated hydrographic/biological stations. The water column stabilisation is described in detail with the aid of vertical profiles of the Brunt-Väisälä frequency squared (N2). The contributions of seasonal warming and ice melting to stabilisation are elucidated by determining the effects of temperature and salinity on N2. The spring bloom in 1991 migrated poleward from June to July by about 400 km, associated with the retreat of the ice edge. The spring bloom culminated with maximum chlorophyll concentrations in the mixed layer about 100–300 km north of the centre of the meltwater lens, at its northern edge, where the ice cover was still substantial. From the distribution of N2 it becomes obvious that the bloom starts at the very beginning of stabilisation, which results solely from the release of meltwater. The increase in temperature due to the seasonal warming does not contribute to the onset of vernal blooming; temperature starts to contribute to the stratification later, when the spring bloom has ceased due to the exhaustion of nutrients in the mixed layer. By that time a deep chlorophyll maximum has formed in the seasonal pycnocline, 20–30 m below the base of the mixed layer. The effect of the seasonal ice cover on the mean areal new primary production is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-06-25
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: image/jpeg
    Format: image/jpeg
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  EPIC3Potsdam Summer School Arctic in the Antropocene, Potsdam, 2014-06-23-2014-07-04
    Publication Date: 2014-09-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-12-03
    Description: Current estimates of global marine primary production range over a factor of two. Improving these estimates requires an accurate knowledge of the chlorophyll vertical profiles, since they are the basis for most primary production models. At high latitudes, the uncertainty in primary production estimates is larger than globally, because here phytoplankton absorption shows specific characteristics due to the low-light adaptation, and in situ data and ocean colour observations are scarce. To date, studies describing the typical chlorophyll profile based on the chlorophyll in the surface layer have not included the Arctic region, or, if it was included, the dependence of the profile shape on surface concentration was neglected. The goal of our study was to derive and describe the typical Greenland Sea chlorophyll profiles, categorized according to the chlorophyll concentration in the surface layer and further monthly resolved profiles. The Greenland Sea was chosen because it is known to be one of the most productive regions of the Arctic and is among the regions in the Arctic where most chlorophyll field data are available. Our database contained 1199 chlorophyll profiles from R/Vs Polarstern and Maria S. Merian cruises combined with data from the ARCSS-PP database (Arctic primary production in situ database) for the years 1957–2010. The profiles were categorized according to their mean concentration in the surface layer, and then monthly median profiles within each category were calculated. The category with the surface layer chlorophyll (CHL) exceeding 0.7 mg C m−3 showed values gradually decreasing from April to August. A similar seasonal pattern was observed when monthly profiles were averaged over all the surface CHL concentrations. The maxima of all chlorophyll profiles moved from the greater depths to the surface from spring to late summer respectively. The profiles with the smallest surface values always showed a subsurface chlorophyll maximum with its median magnitude reaching up to three times the surface concentration. While the variability of the Greenland Sea season in April, May and June followed the global non-monthly resolved relationship of the chlorophyll profile to surface chlorophyll concentrations described by the model of Morel and Berthon (1989), it deviated significantly from the model in the other months (July–September), when the maxima of the chlorophyll are at quite different depths. The Greenland Sea dimensionless monthly median profiles intersected roughly at one common depth within each category. By applying a Gaussian fit with 0.1 mg C m−3 surface chlorophyll steps to the median monthly resolved chlorophyll profiles of the defined categories, mathematical approximations were determined. They generally reproduce the magnitude and position of the CHL maximum, resulting in an average 4% underestimation in Ctot (and 2% in rough primary production estimates) when compared to in situ estimates. These mathematical approximations can be used as the input to the satellite-based primary production models that estimate primary production in the Arctic regions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-04-23
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  EPIC3Goldschmidt Conference, Boston, 2018-08-12-2018-08-17Goldschmidt2018 Abstract
    Publication Date: 2019-06-04
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-11-23
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-02-14
    Description: Mineral ballasting enhances carbon export from the surface to the deep ocean; however, little is known about the role of this process in the ice-covered Arctic Ocean. Here, we propose gypsum ballasting as a new mechanism that likely facilitated enhanced vertical carbon export from an under-ice phytoplankton bloom dominated by the haptophyte Phaeocystis. In the spring 2015 abundant gypsum crystals embedded in Phaeocystis aggregates were collected throughout the water column and on the sea floor at a depth below 2 km. Model predictions supported by isotopic signatures indicate that 2.7 g m−2 gypsum crystals were formed in sea ice at temperatures below −6.5°C and released into the water column during sea ice melting. Our finding indicates that sea ice derived (cryogenic) gypsum is stable enough to survive export to the deep ocean and serves as an effective ballast mineral. Our findings also suggest a potentially important and previously unknown role of Phaeocystis in deep carbon export due to cryogenic gypsum ballasting. The rapidly changing Arctic sea ice regime might favour this gypsum gravity chute with potential consequences for carbon export and food partitioning between pelagic and benthic ecosystems.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...