GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Sampling was conducted from 5 May to 21 May 1986 aboard USNS Lynch, encompassing wide variations in weather and water mass characteristics. Vertical stations (Fig. la) transected density fronts that exist as a consequence of juxtaposition of Mediterranean Sea water and less saline Atlantic water ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-07-20
    Description: Penetration of solar radiation in the ocean is determined by the attenuation coefficient ( K d (λ)). Following radiative transfer theory, K d is a function of angular distribution of incident light and water's absorption and backscattering coefficients. Because these optical products are now generated routinely from satellite measurements, it is logical to evolve the empirical K d to a semi-analytical K d that is not only spectrally flexible, but also the sun-angle effect is accounted for explicitly. Here, the semi-analytical model developed in Lee et al [2005a] is revised to account for the shift of phase function between molecular and particulate scattering from the short to long wavelengths. Further, using field data collected independently from oligotrophic ocean to coastal waters covering 〉99% of the K d range for the global oceans, the semi-analytically derived K d was evaluated and found to agree with measured data within ~7-26%. The updated processing system was applied to MODIS measurements to reveal the penetration of UVA-visible radiation in the global oceans, where an empirical procedure to correct Raman effect was also included. The results indicated that the penetration of the blue-green radiation for most oceanic waters is ~30-40% deeper than the commonly used euphotic zone depth; and confirmed that at a depth of 50-70 m there is still ~10% of the surface UVA radiation (at 360 nm) in most oligotrophic waters. The results suggest a necessity to modify or expand the light attenuation product from satellite ocean-color measurements in order to be more applicable for studies of ocean physics and biogeochemistry.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © Oceanography Society, 2006. This article is posted here by permission of Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 19, 3 (2006): 122-133.
    Description: The Japan/East Sea (JES) contains several oceanic regions separated by dynamic boundaries. These distinct regions, and the physical features that establish and maintain the boundaries between the regions, have significant impacts on its ocean biology. Until recently, most studies of the biology of the JES have focused on nearshore regions, with few detailed studies of the interior of the JES or the dynamic features that define the different regions. In addition, the classic sampling methods used in previous work have not allowed high-resolution studies of biological-physical interactions associated with key dynamic mesoscale frontal zones, quasi-synoptic surveys of water column and biological structure in three dimensions, or broad-scale description of the seasonal cycles in the different biogeographic regions of the JES.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Earth System Science Data 8 (2016): 235-252, doi:10.5194/essd-8-235-2016.
    Description: A compiled set of in situ data is important to evaluate the quality of ocean-colour satellite-data records. Here we describe the data compiled for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The data were acquired from several sources (MOBY, BOUSSOLE, AERONET-OC, SeaBASS, NOMAD, MERMAID, AMT, ICES, HOT, GeP&CO), span between 1997 and 2012, and have a global distribution. Observations of the following variables were compiled: spectral remote-sensing reflectances, concentrations of chlorophyll a, spectral inherent optical properties and spectral diffuse attenuation coefficients. The data were from multi-project archives acquired via the open internet services or from individual projects, acquired directly from data providers. Methodologies were implemented for homogenisation, quality control and merging of all data. No changes were made to the original data, other than averaging of observations that were close in time and space, elimination of some points after quality control and conversion to a standard format. The final result is a merged table designed for validation of satellite-derived ocean-colour products and available in text format. Metadata of each in situ measurement (original source, cruise or experiment, principal investigator) were preserved throughout the work and made available in the final table. Using all the data in a validation exercise increases the number of matchups and enhances the representativeness of different marine regimes. By making available the metadata, it is also possible to analyse each set of data separately. The compiled data are available at doi:10.1594/PANGAEA.854832 (Valente et al., 2015).
    Description: We thank NASA for project funding for data collection.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Earth System Science Data 11(3), (2019): 1037-1068, doi: 10.5194/essd-11-1037-2019.
    Description: A global compilation of in situ data is useful to evaluate the quality of ocean-colour satellite data records. Here we describe the data compiled for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The data were acquired from several sources (including, inter alia, MOBY, BOUSSOLE, AERONET-OC, SeaBASS, NOMAD, MERMAID, AMT, ICES, HOT and GeP&CO) and span the period from 1997 to 2018. Observations of the following variables were compiled: spectral remote-sensing reflectances, concentrations of chlorophyll a, spectral inherent optical properties, spectral diffuse attenuation coefficients and total suspended matter. The data were from multi-project archives acquired via open internet services or from individual projects, acquired directly from data providers. Methodologies were implemented for homogenization, quality control and merging of all data. No changes were made to the original data, other than averaging of observations that were close in time and space, elimination of some points after quality control and conversion to a standard format. The final result is a merged table designed for validation of satellite-derived ocean-colour products and available in text format. Metadata of each in situ measurement (original source, cruise or experiment, principal investigator) was propagated throughout the work and made available in the final table. By making the metadata available, provenance is better documented, and it is also possible to analyse each set of data separately. This paper also describes the changes that were made to the compilation in relation to the previous version (Valente et al., 2016). The compiled data are available at https://doi.org/10.1594/PANGAEA.898188 (Valente et al., 2019).
    Description: This research has been supported by the ESA Climate Change Initiative – Ocean Colour project (ref: AO-1/6207/09/I-LG).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...