GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-1561
    Keywords: Polymorphism ; chemotaxonomy ; Reticulitermes flavipes ; Reticulitermes santonensis ; Isoptera ; termites ; cuticular hydrocarbons ; defensive compounds ; terpenes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Colonies ofReticulitermes flavipes andR. santonensis were collected from the southeastern United States (Georgia) and the southwest of France (Charente-maritime). Defensive compounds and cuticular hydrocarbons were identified by gas chromatography-mass spectrometry and quantified by gas chromatography using an internal standard for each caste and all colonies. These analyses show that although the cuticular hydrocarbons ofR. santonensis in Europe andR. flavipes in Georgia are identical, their relative proportions are different. However, the defensive compounds synthesized by their soldiers are different. A strong chemical polymorphism between sympatric colonies ofR. flavipes in the SW United States was detected in terms of both the hydrocarbons of the workers and soldiers and in the defensive secretions of the soldiers. The six defensive secretion phenotypes are based on the presence or absence of terpenes whereas the cuticular hydrocarbon phenotypes are based on significant differences in the proportions of the various components. A multivariate analysis (analysis of principal components) clearly permitted discrimination of four phenotypes (three inR. flavipes and one inR. santonensis) without intermediates. The hydrocarbons responsible for these variations were identified, and it was shown that the variations are neither seasonal nor geographic. The phenotypes of the cuticular hydrocarbons (workers and soldiers) and defensive compounds are linked in each colony, forming in three groups inR. flavipes Georgia, one subdivided into four subgroups according to the defensive secretion phenotypes. The role of these polymorphisms is discussed and ethological tests indicate that the chemical polymorphism do not determine aggressive behavior. The taxonomic significance of these results is considered and two hypothesis are formulated: (1) We only detected a strong genetic polymorphism in one unique species, and we believe thatR. santonensis was introduced into Europe in the last century from oneR. flavipes colony. (2) Chemical variability characterizes the sibling species that can be grouped into the same subspeciesR. flavipes. Unknown mechanisms of reproductive isolation separate them.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-1561
    Keywords: Interspecific recognition ; Isoptera ; termites ; Reticulitermes ; cuticular hydrocarbons ; aggression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Two species of termites,Reticulitermes (lucifugus) grassei andR. (l.) banyulensis, show a high degree of aggressivity toward each other. The epicuticular signature, recognized by contact, can be extracted using organic solvents, and the removal of the signature abolished all types of aggressive behavior. The signature can be transferred to lures, where it triggers interspecies aggression. It was found to be mainly present in the apolar fraction of the cuticular extracts, which contained only hydrocarbons, are determined by GC/MS techniques. Chemical recognition contributes towards isolation of the two species belonging to theR. lucifugus complex.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...