GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • photosynthesis  (2)
  • iron-limitation  (1)
Document type
Keywords
Publisher
Years
  • 1
    ISSN: 1573-5079
    Keywords: chlorosis ; diagnostic ; flavodoxin ; iron-limitation ; photosynthesis ; phytoplankton
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Iron supply has been suggested to influence phytoplankton biomass, growth rate and species composition, as well as primary productivity in both high and low NO3 − surface waters. Recent investigations in the equatorial Pacific suggest that no single factor regulates primary productivity. Rather, an interplay of bottom-up (i.e., ecophysiological) and top-down (i.e., ecological) factors appear to control species composition and growth rates. One goal of biological oceanography is to isolate the effects of single factors from this multiplicity of interactions, and to identify the factors with a disproportionate impact. Unfortunately, our tools, with several notable exceptions, have been largely inadequate to the task. In particular, the standard technique of nutrient addition bioassays cannot be undertaken without introducing artifacts. These so-called ‘bottle effects’ include reducing turbulence, isolating the enclosed sample from nutrient resupply and grazing, trapping the isolated sample at a fixed position within the water column and thus removing it from vertical movement through a light gradient, and exposing the sample to potentially stimulatory or inhibitory substances on the enclosure walls. The problem faced by all users of enrichment experiments is to separate the effects of controlled nutrient additions from uncontrolled changes in other environmental and ecological factors. To overcome these limitations, oceanographers have sought physiological or molecular indices to diagnose nutrient limitation in natural samples. These indices are often based on reductions in the abundance of photosynthetic and other catalysts, or on changes in the efficiency of these catalysts. Reductions in photosynthetic efficiency often accompany nutrient limitation either because of accumulation of damage, or impairment of the ability to synthesize fully functional macromolecular assemblages. Many catalysts involved in electron transfer and reductive biosyntheses contain iron, and the abundances of most of these catalysts decline under iron-limited conditions. Reductions of ferredoxin or cytochrome f content, nitrate assimilation rates, and dinitrogen fixation rates are amongst the diagnostics that have been used to infer iron limitation in some marine systems. An alternative approach to diagnosing iron-limitation uses molecules whose abundance increases in response to iron-limitation. These include cell surface iron-transport proteins, and the electron transfer protein flavodoxin which replaces the Fe-S protein ferredoxin in many Fe-deficient algae and cyanobacteria.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5079
    Keywords: activation ; deactivation ; induction ; irradiance ; kinetics ; photosynthesis ; phytoplankton ; Rubisco
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) was examined in three marine microalgae: the chlorophyte t Dunaliella tertiolecta and the chromophytes t Pavlova lutheri and t Thalassiosira pseudonana. The three species differed in the sensitivity of Rubisco activity in crude extracts to magnesium ion concentration, the presence of protease inhibitors, the duration of the incubation on activity, and the potential for full activation of Rubisco with 20 mM magnesium chloride and 20 mM bicarbonate t in vitro. t D. tertiolecta had responses that were similar to those described in vascular plants: regulation of initial activity on a gradient of irradiances; maximum initial activities that were 80– 90% of light-saturated photosynthesis; total activities that exceeded light-saturated photosynthesis by 30–100%; and deactivation of Rubisco in darkness. Both initial and total activity declined in darkness and increased on a return to growth irradiance. First-order time constants were about 9 min for deactivation and 3 min for reactivation of initial activity. The decline in total activity after a transition into darkness could not be reversed t in vitro but could be reversed by exposing t D. tertiolecta to light, a characteristic of regulation by CA1P. The responses of t T. pseudonana were qualitatively similar, except that recovery of initial activity was low and could only account for 30–40% of light-saturated photosynthesis. Rubisco from t T. pseudonana exposed to low irradiance could be activated t in vitro but at growth irradiance and higher, total activity was lower than initial activity. The time constants for deactivation and reactivation of initial activity after reciprocal switches between growth irradiance and darkness were 12–18 min and 3 min in t T. pseudonana. t P. lutheri showed no regulation of Rubisco activity in response to changes in irradiance or light-dark transitions. This may have been an artifact of the conditions chosen to measure activity.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...