GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cambridge :Cambridge University Press,
    Keywords: Plate tectonics. ; Electronic books.
    Description / Table of Contents: This book surveys tectonic landforms on solid bodies throughout the Solar System. It discusses the properties and processes that explain the variety of structures observed, and provides methods for mapping and analysing these features. Illustrated with diagrams and spectacular planetary images, this is an essential reference volume.
    Type of Medium: Online Resource
    Pages: 1 online resource (556 pages)
    Edition: 1st ed.
    ISBN: 9780511692093
    Series Statement: Cambridge Planetary Science Series ; v.Series Number 11
    DDC: 551
    Language: English
    Note: Cover -- Half-title -- Series-title -- Title -- Copyright -- Contents -- Contributors -- Preface -- 1 Planetary tectonics: introduction -- Summary -- 1 Introduction -- 2 Terrestrial planets -- 2.1 Mercury -- 2.2 Venus -- 2.3 The Moon -- 2.4 Mars -- 3 Small bodies of the solar system -- 4 Outer planet satellites -- 5 Structural mapping on planetary bodies -- 6 Planetary lithospheres -- 7 Planetary fault populations -- 8 Conclusions -- 2 The tectonics of Mercury -- Summary -- 1 Introduction -- 2 Tectonic features of Mercury -- 2.1 Topographic data -- 2.2 Mapping tectonic features -- 2.3 Lobate scarps -- 2.3.1 Topography of lobate scarps -- 2.3.2 Spatial and temporal distribution of lobate scarps -- 2.3.3 Geometry of lobate scarp thrust faults -- 2.3.4 Displacement-length relationship of lobate scarp thrust faults -- 2.3.5 Influence of buried basins on lobate scarps -- 2.4 High-relief ridges -- 2.5 Wrinkle ridges -- 2.5.1 Topography of wrinkle ridges -- 2.5.2 Spatial distribution of wrinkle ridges on Caloris exterior plains -- 2.6 Wrinkle ridges in the Caloris basin -- 2.7 Caloris basin graben -- 2.8 Summary -- 3. Mechanical and thermal structure of Mercury's crust and lithosphere -- 3.1 Introduction -- 3.2 Thermal structure -- 3.3 Elastic thickness -- 3.4 Fault properties -- 3.5 Summary -- 4. Mechanical and thermal structure of the Caloris basin -- 4.1 Caloris wrinkle ridges and the brittle-ductile transition depth -- 4.2 Strain and depth of faulting of extensional troughs -- 4.3 Caloris loading history -- 4.3.1 Wrinkle ridges -- 4.3.2 Extensional troughs, exterior loading, and lateral crustal flow -- 4.4 Elastic thickness -- 4.5 Stresses -- 4.6 Summary -- 5 Global implications -- 5.1 Fault distribution -- 5.2 Rigidity -- 5.3 Amount of strain and contraction -- 5.4 Sources of stress -- 5.4.1 Contraction -- 5.4.2 Thermal stresses -- 5.4.3 Despinning. , 5.4.4 True polar wander -- 5.4.5 Convection -- 5.4.6 Buoyancy forces -- 5.5 Thermal evolution -- 5.6 Summary -- 6 Conclusions -- Acknowledgments -- References -- 3 Venus tectonics -- Summary -- 1 Introduction -- 2 Tectonic landforms and terrains -- 2.1 Introduction -- 2.2 Plains -- 2.2.1 Distributed deformation -- 2.2.1.1 Wrinkle ridges -- 2.2.1.2 Lineaments and grabens -- 2.2.1.3 Polygonal terrains -- 2.2.2 Concentrated deformation (deformation belts) -- 2.2.2.1 Ridge belt -- 2.2.2.2 Fracture belts -- 2.2.3 Broad-scale vertical deformation -- 2.2.3.1 Stealth ridges -- 2.2.3.2 Regional crustal movements -- 2.3 Volcanic rises -- 2.4 Tessera terrain and crustal plateaus -- 2.4.1 Tessera terrain -- 2.4.2 Crustal plateaus -- 2.4.2.1 Ishtar Terra -- 2.5 Coronae -- 2.6 Chasmata -- 3 Models -- 3.1 Geological models -- 3.2 Geophysical models -- 4 Conclusions -- Acknowledgments -- References -- 4 Lunar tectonics -- Summary -- 1 Introduction -- 2 Tectonic features of Moon -- 2.1 Wrinkle ridges -- 2.1.1 Topography of wrinkle ridges -- 2.1.2 Elevation offsets across wrinkle ridges -- 2.1.3 Subsurface structure at wrinkle ridges -- 2.2 Lunar graben -- 2.2.1 Topography of lunar graben -- 2.2.2 Crater floor graben -- 2.2.3 Rupes Recta normal fault -- 2.3 Lunar scarps -- 2.3.1 Topography of lunar scarps -- 2.4 Wrinkle ridge - lobate scarp transitions -- 2.5 Displacement-length relationships of lunar tectonic features -- 3 Timing of wrinkle-ridge, graben, and lobate scarp formation -- 4 Lunar seismicity -- 4.1 Deep moonquakes -- 4.2 Shallow moonquakes -- 5 Internal structure of the Moon -- 5.1 Seismological constraints -- 5.2 Constraints from gravity and topography -- 6. Basin-localized tectonics and seismicity -- 6.1 Lithospheric structure beneath mare basins -- 6.2 Predictions for tectonic deformation -- 6.3 Basin-localized seismicity. , 7 Global strain from young lobate scarps -- 8 Conclusions and outstanding questions -- Acknowledgments -- References -- 5 Mars tectonics -- Summary -- 1 Introduction -- 2 Global geology, topography and gravity -- 2.1 Physiography -- 2.2 Shape of Mars and crustal structure -- 2.3 Gravity field and lithospheric structure -- 2.4 Core, magnetic field, and true polar wander -- 3 Tectonic features -- 3.1 Extensional structures -- 3.2 Compressional structures -- 3.3 Strike-slip faults -- 4 Tectonic history, orientation and distribution of structures -- 4.1 Alba Patera and Ceraunius Fossae -- 4.2 Structures associated with volcanoes -- 4.3 Tempe Terra -- 4.4 Lunae and Solis Plana -- 4.5 Valles Marineris and Noctis Labyrinthus -- 4.6 Claritas Fossae, Thaumasia, and Sirenum -- 4.7 Western hemisphere tectonic history -- 4.8 Eastern hemisphere -- 4.9 Northern plains -- 5 Tharsis geodynamical models and comparisons to tectonics -- 5.1 Models for the origin of Tharsis -- 5.2 Models for deformation on an elastic spherical shell -- 5.3 Tharsis-induced stress and strain from elastic shell models -- 6 Models and tectonic comparisons: other global-scale features -- 6.1 Models for global isotropic stress and strain -- 6.2 Models for origin of the global dichotomy -- 7 Concluding remarks -- Acknowledgments -- References -- 6 Tectonics of small bodies -- Summary -- 1 Introduction: types of small bodies, their properties, and environments -- 2 Small bodies: characteristics -- 2.1 Asteroids -- 2.2 Comets -- 2.3 Small satellites -- 3 Stress environments of small bodies -- 3.1 Impact environment -- 3.2 Tidal stresses -- 3.3 Thermal stresses -- 4 Observing structures in small bodies: methods and limitations -- 5 Accretional and precursor body structures -- 5.1 Layers in small bodies -- 5.2 Binary objects -- 5.3 Differentiation -- 6 Interior structure from impacts. , 6.1 "Rubble piles" -- 6.2 Porosity -- 6.3 Center of mass - center of figure offsets: significance for structure -- 7 Morphology of surface expressions of structures -- 7.1 Grooves -- 7.2 Troughs -- 7.3 Ridges -- 7.4 Crater shape modification -- 8 Implications of grooves for structure and material properties -- 9 Patterns of linear features and inferred structures -- 9.1 Phobos grooves: impact andor tidal stresses? -- 9.2 Eros grooves: no single pattern -- 9.3 Ida grooves: antipodal effects? -- 9.4 Gaspra structures -- 10 Overview and outstanding questions -- Acknowledgments -- Glossary -- References -- 7 Tectonics of the outer planet satellites -- Summary -- 1 Introduction -- 2 Rheology of ice -- 2.1 Introduction -- 2.2 Elastic deformation -- 2.3 Brittle deformation -- 2.4 Ductile deformation -- 2.5 Viscoelastic behavior -- 2.6 Application to icy satellites -- 2.7 Comparison with silicate behavior -- 3 Global and local stress mechanisms -- 3.1 Background -- 3.1.1 Satellite figures -- 3.1.2 Rigidity and effective elastic thickness -- 3.1.3 Tides -- 3.2 Global stress mechanisms -- 3.2.1 Diurnal tides -- 3.2.2 Nonsynchronous rotation -- 3.2.3 Polar wander -- 3.2.4 Despinning -- 3.2.5 Orbital recession and decay -- 3.2.6 Volume change -- 3.3 Local stress mechanisms -- 3.3.1 Convection -- 3.3.2 Lateral pressure gradients -- 3.3.3 Flexure -- 3.3.4 Impacts -- 4 Io -- 4.1 Tectonic features on Io -- 4.1.1 Fractures -- 4.1.2 Ridges -- 4.1.3 Mountains -- 4.2 Global distribution of mountains and volcanoes -- 5 Active icy satellites -- 5.1 Europa -- 5.1.1 Tectonics of Europa's landforms -- 5.1.1.1 Isolated troughs -- 5.1.1.2 Normal faults -- 5.1.1.3 Ridges -- 5.1.1.4 Bands -- 5.1.1.5 Folds -- 5.1.2 Nonsynchronous rotation of Europa's ice shell -- 5.1.3 Diurnal tidal variations -- 5.1.4 Is Europa currently active? -- 5.2. Enceladus -- 5.3 Triton -- 5.3.1. Ridges. , 5.3.2. Tectonic interactions with cryovolcanic deposits -- 5.3.3. Current activity -- 6 Formerly active icy satellites -- 6.1 Ganymede -- 6.1.1. Dark terrain -- 6.1.2 Bright terrain -- 6.1.3 Implications for Ganymede evolution -- 6.2 Miranda -- 6.3 Ariel -- 6.4 Dione, Tethys, Rhea, and Titania -- 7 Satellites without widespread tectonic activity -- 7.1 Titan -- 7.2 Callisto -- 7.3 Mimas and Iapetus -- 7.4 Other satellites -- 8 Conclusions -- Acknowledgments -- References -- 8 Planetary structural mapping -- Summary -- 1. Introduction -- 2 Mapping and dating structures with spacecraft data -- 2.1 Mapping with visible and infrared images -- 2.2 Mapping with radar images -- 2.3 Mapping with topography -- 3 Structure mapping of planetary bodies -- 3.1 Moon -- 3.2 Mars -- 3.3 Mercury -- 3.4 Venus -- 3.5 Outer planet satellites -- Acknowledgments -- References -- 9 Strength and deformation of planetary lithospheres -- Summary -- 1 Introduction -- 1.1 Flow of rocks: Europa and Ganymede -- 1.2 Mechanisms of deformation -- 1.2.1 Deformation by ionic diffusion coupled with grain boundary sliding -- 1.2.2 Deformation by dislocation processes -- 1.2.3 Deformation by dislocation processes coupled with grain boundary sliding -- 1.2.4 Creep of ice I -- 1.3 Application to Europa and Ganymede -- 2 Strength envelopes: Venus -- 2.1 The strength envelope model -- 2.1.1 Brittle deformation -- 2.1.2 Semi-brittle deformation -- 2.1.3 Plastic flow -- 2.1.4 Water weakening -- 2.1.5 Strength envelope for oceanic lithosphere -- 2.1.6 Strength envelope for continental lithosphere -- 2.1.7 Localization -- 2.1.8 Lithospheric deformation: the global picture -- 2.2 Application to Venus -- 2.2.1 The role of water -- 2.2.2 Strength envelopes for Venus -- 3 Water weakening: Mars -- 3.1 Deformation under hydrous conditions -- 3.1.1 The von Mises criterion and the role of water. , 3.1.2 Comparison of deformation under anhydrous and hydrous conditions.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...