GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    San Diego :Elsevier,
    Keywords: Data mining. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (346 pages)
    Edition: 1st ed.
    ISBN: 9780128187043
    Language: English
    Note: Front Cover -- Big Data Mining for Climate Change -- Copyright -- Contents -- Preface -- 1 Big climate data -- 1.1 Big data sources -- 1.1.1 Earth observation big data -- 1.1.2 Climate simulation big data -- 1.2 Statistical and dynamical downscaling -- 1.3 Data assimilation -- 1.3.1 Cressman analysis -- 1.3.2 Optimal interpolation analysis -- 1.3.3 Three-dimensional variational analysis -- 1.3.4 Four-dimensional variational analysis -- 1.4 Cloud platforms -- 1.4.1 Cloud storage -- 1.4.2 Cloud computing -- Further reading -- 2 Feature extraction of big climate data -- 2.1 Clustering -- 2.1.1 K-means clustering -- 2.1.2 Hierarchical clustering -- 2.2 Hidden Markov model -- 2.3 Expectation maximization -- 2.4 Decision trees and random forests -- 2.5 Ridge and lasso regressions -- 2.6 Linear and quadratic discriminant analysis -- 2.6.1 Bayes classi er -- 2.6.2 Linear discriminant analysis -- 2.6.3 Quadratic discriminant analysis -- 2.7 Support vector machines -- 2.7.1 Maximal margin classi er -- 2.7.2 Support vector classi ers -- 2.7.3 Support vector machines -- 2.8 Rainfall estimation -- 2.9 Flood susceptibility -- 2.10 Crop recognition -- Further reading -- 3 Deep learning for climate patterns -- 3.1 Structure of neural networks -- 3.2 Back propagation neural networks -- 3.2.1 Activation functions -- 3.2.2 Back propagation algorithms -- 3.3 Feedforward multilayer perceptrons -- 3.4 Convolutional neural networks -- 3.5 Recurrent neural networks -- 3.5.1 Input-output recurrent model -- 3.5.2 State-space model -- 3.5.3 Recurrent multilayer perceptrons -- 3.5.4 Second-order network -- 3.6 Long short-term memory neural networks -- 3.7 Deep networks -- 3.7.1 Deep learning -- 3.7.2 Boltzmann machine -- 3.7.3 Directed logistic belief networks -- 3.7.4 Deep belief nets -- 3.8 Reinforcement learning -- 3.9 Dendroclimatic reconstructions. , 3.10 Downscaling climate variability -- 3.11 Rainfall-runoff modeling -- Further reading -- 4 Climate networks -- 4.1 Understanding climate systems as networks -- 4.2 Degree and path -- 4.3 Matrix representation of networks -- 4.4 Clustering and betweenness -- 4.5 Cut sets -- 4.6 Trees and planar networks -- 4.7 Bipartite networks -- 4.8 Centrality -- 4.8.1 Degree centrality -- 4.8.2 Closeness centrality -- 4.8.3 Betweenness centrality -- 4.9 Similarity -- 4.9.1 Cosine similarity -- 4.9.2 Pearson similarity -- 4.10 Directed networks -- 4.11 Acyclic directed networks -- 4.12 Weighted networks -- 4.12.1 Vertex strength -- 4.12.2 Weight-degree/weight-weight correlation -- 4.12.3 Weighted clustering -- 4.12.4 Shortest path -- 4.13 Random walks -- 4.14 El Niño southern oscillation -- 4.15 North Atlantic oscillation -- Further reading -- 5 Random climate networks and entropy -- 5.1 Regular networks -- 5.1.1 Fully connected networks -- 5.1.2 Regular ring-shaped networks -- 5.1.3 Star-shaped networks -- 5.2 Random networks -- 5.2.1 Giant component -- 5.2.2 Small component -- 5.3 Con guration networks -- 5.3.1 Edge probability and common neighbor -- 5.3.2 Degree distribution -- 5.3.3 Giant components -- 5.3.4 Small components -- 5.3.5 Directed random network -- 5.4 Small-world networks -- 5.4.1 Main models -- 5.4.2 Degree distribution -- 5.4.3 Clustering -- 5.4.4 Mean distance -- 5.5 Power-law degree distribution -- 5.5.1 Price's models -- 5.5.2 Barabasi-Albert models -- 5.6 Dynamics of random networks -- 5.7 Entropy and joint entropy -- 5.8 Conditional entropy and mutual information -- 5.9 Entropy rate -- 5.10 Entropy-based climate network -- 5.11 Entropy-based decision tree -- Further reading -- 6 Spectra of climate networks -- 6.1 Understanding atmospheric motions via network spectra -- 6.2 Adjacency spectra -- 6.2.1 Maximum degree -- 6.2.2 Diameter. , 6.2.3 Paths of length k -- 6.3 Laplacian spectra -- 6.3.1 Maximum degree -- 6.3.2 Connectivity -- 6.3.3 Spanning tree -- 6.3.4 Degree sequence -- 6.3.5 Diameter -- 6.4 Spectrum centrality -- 6.4.1 Eigenvector centrality -- 6.4.2 Katz centrality -- 6.4.3 Pagerank centrality -- 6.4.4 Authority and hub centralities -- 6.5 Network eigenmodes -- 6.6 Spectra of complete networks -- 6.7 Spectra of small-world networks -- 6.8 Spectra of circuit and wheel network -- 6.9 Spectral density -- 6.10 Spectrum-based partition of networks -- Further reading -- 7 Monte Carlo simulation of climate systems -- 7.1 Random sampling -- 7.1.1 Uniform distribution -- 7.1.2 Nonuniform distribution -- 7.1.3 Normal distribution -- 7.2 Variance reduction technique -- 7.2.1 Control variable method -- 7.2.2 Control vector method -- 7.3 Strati ed sampling -- 7.4 Sample paths for Brownian motion -- 7.4.1 Cholesky and Karhounen-Loève expansions -- 7.4.2 Brownian bridge -- 7.5 Quasi-Monte Carlo method -- 7.5.1 Discrepancy -- 7.5.2 Koksma-Hlawka inequality -- 7.5.3 Van der Corput sequence -- 7.5.4 Halton sequence -- 7.5.5 Faure sequence -- 7.6 Markov chain Monte Carlo -- 7.7 Gibbs sampling -- Further reading -- 8 Sparse representation of big climate data -- 8.1 Global positioning -- 8.1.1 Multidimensional scaling -- 8.1.2 Local rigid embedding -- 8.2 Embedding rules -- 8.2.1 Attractors and fractal dimension -- 8.2.2 Delay embedding -- 8.2.3 Multichannel singular spectrum analysis -- 8.2.4 Recurrence networks -- 8.3 Sparse recovery -- 8.3.1 Sparse interpolation -- 8.3.2 Sparse approximation -- 8.3.3 Greedy algorithms -- 8.4 Sparse representation of climate modeling big data -- 8.5 Compressive sampling of remote sensing big data -- 8.5.1 s-Sparse approximation -- 8.5.2 Minimal samples -- 8.5.3 Orthogonal matching pursuit -- 8.5.4 Compressive sampling matching pursuit. , 8.5.5 Iterative hard thresholding -- 8.6 Optimality -- 8.6.1 Optimization algorithm for compressive sampling -- 8.6.2 Chambolle and Pock's primal-dual algorithm -- Further reading -- 9 Big-data-driven carbon emissions reduction -- 9.1 Precision agriculture -- 9.2 Oil exploitation -- 9.3 Smart buildings -- 9.4 Smart grids -- 9.5 Smart cities -- Further reading -- 10 Big-data-driven low-carbon management -- 10.1 Large-scale data envelopment analysis -- 10.2 Natural resource management -- 10.3 Roadway network management -- 10.4 Supply chain management -- 10.5 Smart energy management -- Further reading -- 11 Big-data-driven Arctic maritime transportation -- 11.1 Trans-Arctic routes -- 11.2 Sea-ice remote-sensing big data -- 11.2.1 Arctic sea-ice concentration -- 11.2.2 Melt ponds -- 11.2.3 Arctic sea-ice extent -- 11.2.4 Arctic sea-ice thickness -- 11.2.5 Arctic sea-ice motion -- 11.2.6 Comprehensive integrated observation system -- 11.3 Sea-ice modeling big data -- 11.4 Arctic transport accessibility model -- 11.5 Economic and risk assessments of Arctic routes -- 11.6 Big-data-driven dynamic optimal trans-Arctic route system -- 11.7 Future prospects -- Further reading -- Index -- Back Cover.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...