GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Center for Marine Environmental Sciences; MARUM  (4)
Document type
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Kuhlmann, Jannis; Asioli, Alessandra; Strasser, Michael; Trincardi, Fabio; Huhn, Katrin (2014): Integrated Stratigraphic and Morphological Investigation of the Twin Slide Complex Offshore Southern Sicily. In: Krastel, Sebastian; Behrmann, Jan-Hinrich; Völker, David; Stipp, Michael; Berndt, Christian; Urgeles, Roger; Chaytor, Jason; Huhn, Katrin; Strasser, Michael; Harbitz, Carl Bonnevie (eds.), Submarine Mass Movements and Their Consequences, Advances in Natural and Technological Hazards Research, 37, Springer International Publishing, Cham, 583-594, https://doi.org/10.1007/978-3-319-00972-8_52
    Publication Date: 2023-03-03
    Description: The Holocene Twin Slides form the most recent of recurrent mass wasting events along the NE portion of Gela Basin within the Sicily Channel, central Mediterranean Sea. Here, we present new evidence on the morphological evolution and stratigraphic context of this coeval slide complex based on deepdrilled sediment sequences providing a 〉100 ka paleo-oceanographic record. Both Northern (NTS) and Southern Twin Slide (STS) involve two failure stages, a debris avalanche and a translational slide, but are strongly affected by distinct preconditioning factors linked to the older and buried Father Slide. Core-acoustic correlations suggest that sliding occurred along sub-horizontal weak layers reflecting abrupt physical changes in lithology or mechanical properties. Our results show further that headwall failure predominantly took place along sub-vertical normal faults, partly through reactivation of buried Father Slide headscarps.
    Keywords: Center for Marine Environmental Sciences; MARUM
    Type: Dataset
    Format: application/zip, 5 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Fischer, David; Mogollón, José M; Strasser, Michael; Pape, Thomas; Bohrmann, Gerhard; Fekete, Noemi; Spieß, Volkhard; Kasten, Sabine (2013): Subduction zone earthquake as potential trigger of submarine hydrocarbon seepage. Nature Geoscience, 6(8), 647-651, https://doi.org/10.1038/ngeo1886
    Publication Date: 2023-03-03
    Description: Methane, a potent greenhouse gas, is abundant in marine sediments**1, 2. Submarine seepage of methane-dominated hydrocarbons is heterogeneous in space and time, and mechanisms that can trigger episodic seep events are poorly understood**2, 3, 4. For example, critical gas pressures have been predicted to develop beneath impermeable sediments that bear gas hydrates, making them susceptible to mechanical failure and gas release**5, 6. Gas hydrates often occur in seismically active regions, but the role of earthquakes as triggers of hydrocarbon seepage through gas-hydrate-bearing sediments has been only superficially addressed**7, 8. Here we present geochemical analyses of sediment cores retrieved from the convergent margin off Pakistan. We find that a substantial increase in the upward flux of gas occurred within a few decades of a Mw 8.1 earthquake in 1945-the strongest earthquake reported for the Arabian Sea. Our seismic reflection data suggest that co-seismic shaking fractured gas-hydrate-bearing sediments, creating pathways for the free gas to migrate from a shallow reservoir within the gas hydrate stability zone into the water column. We conservatively estimate that 3.26×10**8 mol of methane have been discharged from the seep site since the earthquake. We therefore suggest that hydrocarbon seepage triggered by earthquakes needs to be considered in local and global carbon budgets at active continental margins.
    Keywords: Center for Marine Environmental Sciences; MARUM
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Strasser, Michael; Kölling, Martin; dos Santos Ferreira, Christian; Fink, Hiske G; Fujiwara, Toshiya; Henkel, Susann; Ikehara, Ken; Kanamatsu, Toshiya; Kawamura, Kiichiro; Kodaira, Shuichi; Römer, Miriam; Wefer, Gerold; JAMSTEC Cruise MR12-E01 scientists; R/V Sonne Cruise SO219A scientists (2013): A slump in the trench: Tracking the impact of the 2011 Tohoku-Oki earthquake. Geology, 41(8), 935-938, https://doi.org/10.1130/G34477.1
    Publication Date: 2023-12-02
    Description: We present differential bathymetry and sediment core data from the Japan Trench, sampled after the 2011 Tohoku-Oki (offshore Japan) earthquake to document that prominent bathymetric and structural changes along the trench axis relate to a large (~27.7 km**2) slump in the trench. Transient geochemical signals in the slump deposit and analysis of diffusive re-equilibration of disturbed SO4**2- profiles over time constrain the triggering of the slump to the 2011 earthquake. We propose a causal link between earthquake slip to the trench and rotational slumping above a subducting horst structure. We conclude that the earthquake-triggered slump is a leading agent for accretion of trench sediments into the forearc and hypothesize that forward growth of the prism and seaward advance of the deformation front by more than 2 km can occur, episodically, during a single-event, large mega-thrust earthquake.
    Keywords: Center for Marine Environmental Sciences; MARUM
    Type: Dataset
    Format: application/zip, 10 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Fink, Hiske G; Strasser, Michael; Römer, Miriam; Kölling, Martin; Ikehara, Ken; Kanamatsu, Toshiya; Dinten, Dominik; Kioka, Arata; Fujiwara, Toshiya; Kawamura, Kiichiro; Kodaira, Shuichi; Wefer, Gerold (2014): Evidence for Mass Transport Deposits at the IODP JFAST-Site in the Japan Trench. In: Krastel, Sebastian; Behrmann, Jan-Hinrich; Völker, David; Stipp, Michael; Berndt, Christian; Urgeles, Roger; Chaytor, Jason; Huhn, Katrin; Strasser, Michael; Harbitz, Carl Bonnevie (eds.), Submarine Mass Movements and Their Consequences, Advances in Natural and Technological Hazards Research, 37, Springer International Publishing, Cham, 33-43, https://doi.org/10.1007/978-3-319-00972-8_4
    Publication Date: 2023-12-02
    Description: Several studies indicate that the 2011 Tohoku-Oki earthquake (Mw 9.0) off the Pacific coast of Japan has induced slip to the trench and triggered landslides in the Japan Trench. In order to better understand these processes, detailed mapping and shallow-coring landslides at the trench as well as Integrated Ocean Drilling Program (IODP) deep drilling to recover the plate boundary décollement (Japan Trench Fast Earthquake Drilling Project, JFAST) have been conducted. In this study we report sediment core data from the rapid response R/V SONNE cruise (SO219A) to the Japan Trench, evidencing a Mass Transport Deposit (MTD) in the uppermost section later drilled at this JFAST-site during IODP Expedition 343. A 8.7 m long gravity core (GeoB16423-1) recovered from ~7,000 m water depth reveals a 8 m sequence of semi-consolidated mud clast breccias embedded in a distorted chaotic sediment matrix. The MTD is covered by a thin veneer of 50 cm hemipelagic, bioturbated diatomaceous mud. This stratigraphic boundary can be clearly distinguished by using physical properties data from Multi Sensor Core Logging and from fall-cone penetrometer shear strength measurements. The geochemical analysis of the pore-water shows undisturbed linear profiles measured from the seafloor downcore across the stratigraphic contact between overlying younger background-sediment and MTD below. This indicates that the investigated section has not been affected by a recent sediment destabilization in the course of the giant Tohoku-Oki earthquake event. Instead, we report an older landslide which occurred between 700 and 10,000 years ago, implying that submarine mass movements are dominant processes along the Japan Trench. However, they occur on local sites and not during each megathrust earthquake.
    Keywords: Center for Marine Environmental Sciences; MARUM
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...