GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Alkalinity, total; Aragonite saturation state; Bacteria, cells; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Brackish waters; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cells, other; Chlorophyll a; Choanoflagellates; Chrysophyceae; Community composition and diversity; Cryptophyceae; DATE/TIME; Diatoms; Dimethyl sulfide; Dimethyl sulfide, yield; Dimethylsulfoniopropionate, dissolved; Dimethylsulfoniopropionate, total; Dimethylsulfoniopropionate rate; Dinoflagellates; Duration, number of days; Entire community; Flagellates indeterminata; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Identification; Laboratory experiment; MULT; Multiple investigations; Nitrate; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Other metabolic rates; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phosphate; Potentiometric titration; Prasinophyceae; Primary production/Photosynthesis; Primary production of carbon, dissolved; Primary production of carbon, particulate; Primary production of carbon, total; Prymnesiophyceae; Quebec, Canada; Replicate; Salinity; Silicate; Spectrophotometric; StLawrence_Estuary; Sulfur, 35S; Temperate; Temperature, water; Type  (1)
Document type
Keywords
Publisher
Years
  • 1
    Publication Date: 2024-04-27
    Description: The objective of this study was to assess experimentally the potential impact of anthropogenic pH perturbation (ApHP) on concentrations of dimethyl sulfide (DMS) and dimethylsulfoniopropionate (DMSP), as well as processes governing the microbial cycling of sulfur compounds. A summer planktonic community from surface waters of the Lower St. Lawrence Estuary was monitored in microcosms over 12 days under three pCO2 targets: 1 * pCO2 (775 µatm), 2 * pCO2 (1,850 µatm), and 3 * pCO2 (2,700 µatm). A mixed phytoplankton bloom comprised of diatoms and unidentified flagellates developed over the course of the experiment. The magnitude and timing of biomass buildup, measured by chlorophyll a concentration, changed in the 3 * pCO2 treatment, reaching about half the peak chlorophyll a concentration measured in the 1 * pCO2 treatment, with a 2-day lag. Doubling and tripling the pCO2 resulted in a 15% and 40% decline in average concentrations of DMS compared to the control. Results from 35S-DMSPd uptake assays indicated that neither concentrations nor microbial scavenging efficiency of dissolved DMSP was affected by increased pCO2. However, our results show a reduction of the mean microbial yield of DMS by 34% and 61% in the 2 * pCO2 and 3 * pCO2 treatments, respectively. DMS concentrations correlated positively with microbial yields of DMS (Spearman's ρ = 0.65; P 〈 0.001), suggesting that the impact of ApHP on concentrations of DMS in diatom-dominated systems may be strongly linked with alterations of the microbial breakdown of dissolved DMSP. Findings from this study provide further empirical evidence of the sensitivity of the microbial DMSP switch under ApHP. Because even small modifications in microbial regulatory mechanisms of DMSP can elicit changes in atmospheric chemistry via dampened efflux of DMS, results from this study may contribute to a better comprehension of Earth's future climate.
    Keywords: Alkalinity, total; Aragonite saturation state; Bacteria, cells; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Brackish waters; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cells, other; Chlorophyll a; Choanoflagellates; Chrysophyceae; Community composition and diversity; Cryptophyceae; DATE/TIME; Diatoms; Dimethyl sulfide; Dimethyl sulfide, yield; Dimethylsulfoniopropionate, dissolved; Dimethylsulfoniopropionate, total; Dimethylsulfoniopropionate rate; Dinoflagellates; Duration, number of days; Entire community; Flagellates indeterminata; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Identification; Laboratory experiment; MULT; Multiple investigations; Nitrate; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Other metabolic rates; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phosphate; Potentiometric titration; Prasinophyceae; Primary production/Photosynthesis; Primary production of carbon, dissolved; Primary production of carbon, particulate; Primary production of carbon, total; Prymnesiophyceae; Quebec, Canada; Replicate; Salinity; Silicate; Spectrophotometric; StLawrence_Estuary; Sulfur, 35S; Temperate; Temperature, water; Type
    Type: Dataset
    Format: text/tab-separated-values, 2577 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...