GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2013
    Keywords: Airway smooth muscle ; Patch-clamp ; Ca2+-activated K+ channels ; ATP sensitivity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Large-conductance Ca2+-activated K+ channels were studied in membranes of cultured rabbit airway smooth muscle cells, using the patch-clamp technique. In cell-attached recordings, channel openings were rare and occurred only at very positive potentials. Bradykinin (10 μM), an agonist which releases Ca2+ from the sarcoplasmic reticulum, transiently increased channel activity. The metabolic blocker 2,4-dinitrophenol (20 μM), which lowers cellular adenosine triphosphate (ATP) levels, induced a sustained increase of channel activity in cell-attached patches. In excised patches, these channels had a slope conductance of 155 pS at 0 mV, were activated by depolarization and by increasing the Ca2+ concentration at the cytoplasmic side above 10−7 mol/l. ATP, applied to the cytoplasmic side of the patches, dose-dependently decreased the channel's open-state probability. An inhibition constant (K i) of 0.2 mmol/l was found for the ATP-induced inhibition. ATP reduced the Ca2+ sensitivity of the channel, shifting the Ca2+ activation curve to the right and additionally reducing its steepness. Our results demonstrate that cytoplasmic ATP inhibits a large-conductance Ca2+-activated K+ channel in airway smooth muscle. This ATP modulation of Ca2+-activated K+ channels might serve as an important mechanism linking energy status and the contractile state of the cells.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...