GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 104-643; 104-644; 151-907; 151-909; 162-985; 162-987; COMPCORE; Composite Core; Iceland Sea; Joides Resolution; Leg104; Leg151; Leg162; North Greenland Sea; Norwegian Sea; Ocean Drilling Program; ODP  (1)
Document type
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Huber, Robert; Meggers, Helge; Baumann, Karl-Heinz; Raymo, Maureen E; Henrich, Rüdiger (2000): Shell size variation of the planktonic foraminifer Neogloboquadrina pachyderma sin. in the Norwegian-Greenland Sea during the last 1.3 Myrs: implications for paleoceanographic reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology, 160(3-4), 193-212, https://doi.org/10.1016/S0031-0182(00)00066-3
    Publication Date: 2024-01-09
    Description: We present measurements of the maximum diameter of the planktonic foraminifer Neogloboquadrina pachyderma sin. from six sediment cores (Ocean Drilling Program sites 643, 644, 907, 909, 985 and 987) from the Norwegian-Greenland Sea. Our data show a distinct net increase in mean shell size of N. pachyderma sin. at all sites during the last 1.3 Ma, with largest shell sizes reached after 0.4 Ma. External factors such as glacial-interglacial variability and carbonate dissolution alone cannot account for the observed variation in mean shell size of N. pachyderma sin. We consider the observed shell size increase to mirror an evolutionary trend towards better adaptation of N. pachyderma sin. to the cold water environment after 1.1-1.0 Ma. Probably, the Mid Pleistocene climate shift and the associated change of amplitude and frequency of glacial-interglacial fluctuations have triggered the evolution of this planktonic foraminifer. Oxygen and carbon stable isotope analyses of different shell size classes indicate that the observed shell size increase could not be explained by the functional concept that larger shells promote increasing sinking velocities during gametogenesis. For paleoceanographic reconstructions, the evolutionary adaptation of Neogloboquadrina pachyderma sin. to the cold water habitat has significant implications. Carbonate sedimentation in highest latitudes is highly dependent on the presence of this species. In the Norwegian-Greenland Sea, carbonate-poor intervals before 1.1 Ma are, therefore, not necessarily related to severe glacial conditions. They are probably attributed to the absence of this not yet polar-adapted species. Further, transfer function and modern analog techniques used for the reconstruction of surface water conditions in high latitudes could, therefore, contain a large range of errors if they were applied to samples older than 1.1-1.0 Myrs.
    Keywords: 104-643; 104-644; 151-907; 151-909; 162-985; 162-987; COMPCORE; Composite Core; Iceland Sea; Joides Resolution; Leg104; Leg151; Leg162; North Greenland Sea; Norwegian Sea; Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 7 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...