GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 10; 11; 12; 13; 14; 15; 16; 7; 8; 9; AWI_Envi; AWI_PerDyn; AWI_Perma; DATE/TIME; DISTANCE; Event label; Kurungnakh_10; Kurungnakh_11; Kurungnakh_12; Kurungnakh_13; Kurungnakh_14; Kurungnakh_15; Kurungnakh_16; Kurungnakh_7; Kurungnakh_8; Kurungnakh_9; Kurungnakh Island, Lena Delta, Siberia; LAND; Permafrost Research; Permafrost Research (Periglacial Dynamics) @ AWI; Polar Terrestrial Environmental Systems @ AWI; Sampling/measurement on land; Station label  (1)
  • AWI_Envi; AWI_PerDyn; AWI_Perma; Permafrost Research; Permafrost Research (Periglacial Dynamics) @ AWI; Polar Terrestrial Environmental Systems @ AWI  (1)
Publikationsart
Schlagwörter
Verlag/Herausgeber
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2023-03-16
    Beschreibung: In permafrost areas, seasonal freeze-thaw cycles of active layer result in upward and downward movements of the ground. Additionally, relatively uniform thawing of the ice-rich layer at the permafrost table can contribute to net long-term surface lowering. We use a simple method to quantify surface lowering (subsidence) and uplift in a yedoma area of the Lena River Delta, Siberian Arctic (Kurungnakh Island), using reference rods (metal pipes and fiberglass rods) installed deeply in permafrost. The metal pipes were 2 m long and 3 cm in diameter and were anchored at least 1 m below the typical active layer. The fiberglass rods were 2 m long and 1 cm in diameter and were anchored at least 70 m below the typical active layer. We assume, therefore, that the rods were motionless relative to the permafrost. The plexiglass plate with a size of 10 by 10 cm was fixed in its horizontal position by the rod but could move freely with the surface vertically along the rod. We repeatedly measured distance between the top of a rod and a plexiglass plate resting on the ground surface. Several distance measurements around each rod were taken at each visit and averaged. Altogether 12 metal pipes were installed at the study site in April 2013 and 19 fiberglass rods were installed in April 2014. Measurements were conducted during field campaigns from spring 2013 to summer 2017 with some gaps. We provide here the measured distances between the top of a rod and a plexiglass plate. To obtain the ground displacement, the user have to define the period of interest and calculate the displacement.
    Schlagwort(e): 10; 11; 12; 13; 14; 15; 16; 7; 8; 9; AWI_Envi; AWI_PerDyn; AWI_Perma; DATE/TIME; DISTANCE; Event label; Kurungnakh_10; Kurungnakh_11; Kurungnakh_12; Kurungnakh_13; Kurungnakh_14; Kurungnakh_15; Kurungnakh_16; Kurungnakh_7; Kurungnakh_8; Kurungnakh_9; Kurungnakh Island, Lena Delta, Siberia; LAND; Permafrost Research; Permafrost Research (Periglacial Dynamics) @ AWI; Polar Terrestrial Environmental Systems @ AWI; Sampling/measurement on land; Station label
    Materialart: Dataset
    Format: text/tab-separated-values, 111 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Antonova, Sofia; Sudhaus, Henriette; Strozzi, Tazio; Zwieback, Simon; Kääb, Andreas; Heim, Birgit; Langer, Moritz; Bornemann, Niko; Boike, Julia (2018): Thaw subsidence of a yedoma landscape in Northern Siberia, measured in situ and estimated from TerraSAR-X interferometry. Remote Sensing, 10(4), 494, https://doi.org/10.3390/rs10040494
    Publikationsdatum: 2023-03-16
    Beschreibung: In permafrost areas, seasonal freeze-thaw cycles result in upward and downward movements of the ground. For some permafrost areas, long-term downward movements were reported during the last decade. We measured seasonal and multi-year ground movements in a yedoma region of the Lena River Delta, Siberia, in 2013–2017, using reference rods installed deep in the permafrost. The seasonal subsidence was 1.7 ± 1.5 cm in the cold summer of 2013 and 4.8 ± 2 cm in the warm summer of 2014. Furthermore, we measured a pronounced multi-year net subsidence of 9.3 ± 5.7 cm from spring 2013 to the end of summer 2017. Importantly, we observed a high spatial variability of subsidence of up to 6 cm across a sub-meter horizontal scale. In summer 2013, we accompanied our field measurements with Differential Synthetic Aperture Radar Interferometry (DInSAR) on repeat-pass TerraSAR-X (TSX) data from the summer of 2013 to detect summer thaw subsidence over the same study area. Interferometry was strongly affected by a fast phase coherence loss, atmospheric artifacts, and possibly the choice of reference point. A cumulative ground movement map, built from a continuous interferogram stack, did not reveal a subsidence on the upland but showed a distinct subsidence of up to 2 cm in most of the thermokarst basins. There, the spatial pattern of DInSAR-measured subsidence corresponded well with relative surface wetness identified with the near infra-red band of a high-resolution optical image. Our study suggests that (i) although X-band SAR has serious limitations for ground movement monitoring in permafrost landscapes, it can provide valuable information for specific environments like thermokarst basins, and (ii) due to the high sub-pixel spatial variability of ground movements, a validation scheme needs to be developed and implemented for future DInSAR studies in permafrost environments.
    Schlagwort(e): AWI_Envi; AWI_PerDyn; AWI_Perma; Permafrost Research; Permafrost Research (Periglacial Dynamics) @ AWI; Polar Terrestrial Environmental Systems @ AWI
    Materialart: Dataset
    Format: application/zip, 3 datasets
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...