GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Journal of Geophysical Research: Earth Surface, Wiley, 121, pp. 1849-1860, ISSN: 21699003
    Publication Date: 2016-11-14
    Description: The density of firn is an important property for monitoring and modeling the ice sheet as well as to model the pore close-off and thus to interpret ice core-based greenhouse gas records. One feature, which is still in debate, is the potential existence of an annual cycle of firn density in low-accumulation regions. Several studies describe or assume seasonally successive density layers, horizontally evenly distributed, as seen in radar data. On the other hand, high-resolution density measurements on firn cores in Antarctica and Greenland showed no clear seasonal cycle in the top few meters. A major caveat of most existing snow-pit and firn-core based studies is that they represent one vertical profile from a laterally heterogeneous density field. To overcome this, we created an extensive dataset of horizontal and vertical density data at Kohnen Station, Dronning Maud Land on the East Antarctic Plateau. We drilled and analyzed three 90 m long firn cores as well as 160 one meter long vertical profiles from two elongated snow trenches to obtain a two dimensional view of the density variations. The analysis of the 45 m wide and 1 m deep density fields reveals a seasonal cycle in density. However, the seasonality is overprinted by strong stratigraphic noise, making it invisible when analyzing single firn cores. Our density dataset extends the view from the local ice-core perspective to a hundred meter scale and thus supports linking spatially integrating methods such as radar and seismic studies to ice and firn cores.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-11-14
    Description: The European Project for Ice Coring in Antarctica Dome ice core from Dome C (EDC) has allowed for the reconstruction of atmospheric CO2 concentrations for the last 800,000 years. Here we revisit the oldest part of the EDC CO2 record using different air extraction methods and sections of the core. For our established cracker system, we found an analytical artifact, which increases over the deepest 200 m and reaches 10.1 ± 2.4 ppm in the oldest/deepest part. The governing mechanism is not yet fully understood, but it is related to insufficient gas extraction in combination with ice relaxation during storage and ice structure. The corrected record presented here resolves partly - but not completely - the issue with a different correlation between CO2 and Antarctic temperatures found in this oldest part of the records. In addition, we provide here an update of 800,000 years atmospheric CO2 history including recent studies covering the last glacial cycle.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-17
    Description: A continuous high-resolution record of digital images has been obtained from the North Greenland Ice Core Project (NorthGRIP) ice core (75.1N, 42.3W) in the depth interval from 1330 m to the bedrock at 3085 m. The ice core stratigraphy is clearly visible throughout the glacial period with the most frequent and brightest visible layers appearing during the coldest events. Down to a depth of 2600 m the horizontal layeringis very regular; below this depth, small irregularities in the layering start to appear, and below 2800 m the visual stratigraphy becomes more uncertain, perhaps because of penetration into climatically warmer ice. Comparison of the visual stratigraphy with high-resolution continuous records of chemical impurities and dust reveals a high degree of correlation, which indicates that the visible layers are caused by these impurities. Anew approach is used to automatically determine annual layer thicknesses from the visual stratigraphy record by carrying out a frequency analysis of the most prominent visible layers in the profile. The result gives strong support for the NorthGRIP timescale model.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...