GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geochemistry, Geophysics, Geosystems, 18 (6). pp. 2149-2161.
    Publication Date: 2020-02-06
    Description: We report the results of a two-dimensional tomographic inversion of marine seismic refraction data from an array of ocean-bottom seismographs (OBSs), which produced an image of the crustal structure along the axial valley of the ultraslow spreading Mid-Cayman Spreading Center (MCSC). The seismic velocity model shows variations in the thickness and properties of the young oceanic crust that are consistent with the existence of two magmatic-tectonic segments along the 110 km long spreading center. Seismic wave speeds are consistent with exhumed mantle at the boundary between these two segments, but changes in the vertical gradient of seismic velocity suggest that volcanic crust occupies most of the axial valley seafloor along the seismic transect. The two spreading segments both have a low-velocity zone (LVZ) several kilometers beneath the seafloor, which may indicate the presence of shallow melt. However, the northern segment also has low seismic velocities (3 km/s) in a thick upper crustal layer (1.5–2.0 km), which we interpret as an extrusive volcanic section with high porosity and permeability. This segment hosts the Beebe vent field, the deepest known high-temperature black smoker hydrothermal vent system. In contrast, the southern spreading segment has seismic velocities as high as 4.0 km/s near the seafloor. We suggest that the porosity and permeability of the volcanic crust in the southern segment are much lower, thus limiting deep seawater penetration and hydrothermal recharge. This may explain why no hydrothermal vent system has been found in the southern half of the MCSC.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 45 (20). pp. 11050-11058.
    Publication Date: 2021-02-08
    Description: Ahyi is a fully submerged arc volcano in the Northern Mariana Islands, northwestern Pacific Ocean. In April and May 2014, the volcano erupted over a period of 15 days. Results from direction-of-arrival calculations show that underwater sound phases associated with the episode were recorded as far as Wake Island, where a hydrophone triplet array is operated as part of the International Monitoring System. After a 3.5-hr-long sequence of hydroacoustic precursory events, explosive volcanic activity occurred in two distinct, several-days-long bursts, accompanied by a notable decrease in low-frequency arrivals that may indicate a shift in signal source parameters. Acoustic resolution of the hydrophone data supersedes broadband networks by almost 1 order of magnitude, successfully identifying seismic events at Ahyi as low as 2.5 mb. Total radiated acoustic energy of the eruption is estimated at 9.7 1013 J, which suggests that submarine volcanic activity contributed significantly to the ocean soundscape.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 43 (4). pp. 1529-1536.
    Publication Date: 2020-11-04
    Description: Monowai is an active submarine volcanic center in the Kermadec Arc, Southwest Pacific Ocean. During May 2011, it erupted over a period of 5 days, with explosive activity directly linked to the generation of seismoacoustic T phases. We show, using cross-correlation and time-difference-of-arrival techniques, that the eruption is detected as far as Ascension Island, equatorial South Atlantic Ocean, where a bottom moored hydrophone array is operated as part of the International Monitoring System of the Comprehensive Nuclear-Test-Ban Treaty Organization. Hydroacoustic phases from the volcanic center must therefore have propagated through the Sound Fixing and Ranging channel in the South Pacific and South Atlantic Oceans, a source-receiver distance of ~15,800 km. We believe this to be the furthest documented range of a naturally occurring underwater signal above 1 Hz. Our findings, which are consistent with observations at regional broadband stations and long-range, acoustic parabolic equation modeling, have implications for submarine volcano monitoring.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-02-28
    Description: We present 2-D seismic velocity models and coincident multichannel seismic reflection images of the overriding plate and the inter-plate boundary of the Nicaragua convergent margin along two wide-angle seismic profiles parallel and normal to the trench acquired in the rupture area of the 1992 tsunami earthquake. The trench-perpendicular profile runs over a seamount subducting under the margin slope, at the location where seismological observations predict large coseismic slip. Along this profile, the igneous basement shows increasing velocity both with depth and away from the trench, reflecting a progressive decrease in upper-plate rock degree of fracturing. Upper mantle-like velocities are obtained at approximate to 10 km depth beneath the fore-arc Sandino basin, indicating a shallow mantle wedge. A mismatch of the inter-plate reflector in the velocity models and along coincident multichannel seismic profiles under the slope is best explained by approximate to 15% velocity anisotropy, probably caused by subvertical open fractures that may be related to fluid paths feeding known seafloor seepage sites. The presence of a shallow, partially serpentinized mantle wedge, and the fracture-related anisotropy are supported by gravity analysis of velocity-derived density models. The downdip limit of inter-plate seismicity occurs near the tip of the inferred mantle wedge, suggesting that seismicity could be controlled by the presence of serpentinite group minerals at the fault gouge. Near the trench, the inferred local increase of normal stress produced by the subducting seamount in the plate boundary may have made this fault segment unstable during earthquake rupture, which could explain its tsunamigenic character.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-02-27
    Description: Extension of the continental lithosphere leads to the formation of rift basins or rifted continental margins if breakup occurs. Seismic investigations have repeatedly shown that conjugate margins have asymmetric tectonic structures and different amount of extension and crustal thinning. Here we compare two coincident wide-angle and multichannel seismic profiles across the northern Tyrrhenian rift system sampling crust that underwent different stages of extension from north to south and from the flanks to the basin center. Tomographic inversion reveals that the crust has thinned homogeneously from ~24 km to ~17 km between the Corsica Margin and the Latium Margin implying a β factor of ~1.3–1.5. On the transect 80 km to the south, the crust thinned from ~24 km beneath Sardinia to a maximum of ~11 km in the eastern region near the Campania Margin (β factor of ~2.2). The increased crustal thinning is accompanied by a zone of reduced velocities in the upper crust that expands progressively toward the southeast. We interpret that the velocity reduction is related to rock fracturing caused by a higher degree of brittle faulting, as observed on multichannel seismic images. Locally, basalt flows are imaged intruding sediment in this zone, and heat flow values locally exceed 100 mW/m2. Velocities within the entire crust range 4.0–6.7 km/s, which are typical for continental rocks and indicate that significant rift-related magmatic underplating may not be present. The characteristics of the pre-tectonic, syn-tectonic and post-tectonic sedimentary units allow us to infer the spatial and temporal evolution of active rifting. In the western part of the southern transect, thick postrift sediments were deposited in half grabens that are bounded by large fault blocks. Fault spacing and block size diminish to the east as crustal thinning increases. Recent tectonic activity is expressed by faults cutting the seafloor in the east, near the mainland of Italy. The two transects show the evolution from the less extended rift in the north with a fairly symmetric conjugate structure to the asymmetric margins farther south. This structural evolution is consistent with W-E rift propagation and southward increasing extension rates.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geochemistry, Geophysics, Geosystems, 15 (7). pp. 3035-3050.
    Publication Date: 2018-02-28
    Description: We investigate potential relations between variations in seafloor relief and age of the incoming plate and interplate seismicity. Westward from Osa Peninsula in Costa Rica, a major change in the character of the incoming Cocos Plate is displayed by abrupt lateral variations in seafloor depth and thermal structure. Here a Mw 6.4 thrust earthquake was followed by three aftershock clusters in June 2002. Initial relocations indicate that the main shock occurred fairly trenchward of most large earthquakes along the Middle America Trench off central Costa Rica. The earthquake sequence occurred while a temporary network of OBH and land stations ∼80 km to the northwest were deployed. By adding readings from permanent local stations, we obtain uncommon P wave coverage of a large subduction zone earthquake. We relocate this catalog using a nonlinear probabilistic approach within both, a 1-D and a 3-D P wave velocity models. The main shock occurred ∼25 km from the trench and probably along the plate interface at 5–10 km depth. We analyze teleseismic data to further constrain the rupture process of the main shock. The best depth estimates indicate that most of the seismic energy was radiated at shallow depth below the continental slope, supporting the nucleation of the Osa earthquake at ∼6 km depth. The location and depth coincide with the plate boundary imaged in prestack depth-migrated reflection lines shot near the nucleation area. Aftershocks propagated downdip to the area of a 1999 Mw 6.9 sequence and partially overlapped it. The results indicate that underthrusting of the young and buoyant Cocos Ridge has created conditions for interplate seismogenesis shallower and closer to the trench axis than elsewhere along the central Costa Rica margin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-01-22
    Description: The Cape Verde mid-plate swell is the largest amplitude oceanic mid-plate swell on Earth at similar to 1800 km in diameter, with a crest similar to 2.2 km high, and long-wavelength positive geoid, gravity and heat flow anomalies of 8 m, 30 mGal and 10 15 mW m(-2), respectively. These characteristics and its location on the slow moving-to-stationary African Plate, which concentrates the volcanism and associated geophysical anomalies within a relatively small areal extent, makes it an ideal location to test various proposed mechanisms for swell support. Wide-angle seismic refraction data have been acquired along a similar to 474 km profile extending north-south from the swell crest. In this paper, the 2-D velocity-depth crustal model derived from forward modelling of phase traveltime picks is tested using two independent inversion approaches. The final crustal velocity-depth model derived from the combined modelling, shows no evidence for widespread thickened crust or for lower crustal velocities exceeding 7.3 km s(-1) that are indicative of undercrustal magmatic material. Using the final velocity-depth model to constrain the crust for 3-D 'whole plate' lithospheric flexure modelling of island loading alone, we show that the lithosphere of the Cape Verde region appears stronger than expected for its age. Regional-scale modelling suggests that the majority of the swell height is supported by dynamic upwelling within the asthenosphere coupled with, but to a lesser degree, the effect of a region of low density in the deeper lithosphere, originating most likely from conductive reheating of the overlying plate due to its slow-to-stationary motion. When this regional upward-acting buoyancy force is considered in the context of the shorter wavelength flexure associated with island loading, modelling suggests that the apparent high plate strength is a consequence of, in effect, a regional unbending of a lithosphere that has a long-term strength typical for its age
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-01-21
    Description: At convergent margins, the structure of the subducting oceanic plate is one of the key factors controlling the morphology of the upper plate. We use high-resolution seafloor mapping and multichannel seismic reflection data along the accretionary Sumatra trench system to investigate the morphotectonic response of the upper plate to the subduction of lower plate fabric. Upper plate segmentation is reflected in varying modes of mass transfer. The deformation front in the southern Enggano segment is characterized by neotectonic formation of a broad and shallow fold-and-thrust belt consistent with the resumption of frontal sediment accretion in the wake of oceanic relief subduction. Conversely, surface erosion increasingly shapes the morphology of the lower slope and accretionary prism towards the north where significant oceanic relief is subducted. Subduction of the Investigator Fracture Zone and the fossil Wharton spreading centre in the Siberut segment exemplifies this. Such features also correlate with an irregularly trending deformation front suggesting active frontal erosion of the upper plate. Lower plate fabric extensively modulates upper plate morphology and the large-scale morphotectonic segmentation of the Sumatra trench system is linked to the subduction of reactivated fracture zones and aseismic ridges of the Wharton Basin. In general, increasing intensity of mass-wasting processes, from south to north, correlates with the extent of oversteepening of the lower slope (lower slope angle of 3.8 degrees in the south compared with 7.6 degrees in the north), probably in response to alternating phases of frontal accretion and sediment underthrusting. Accretionary mechanics thus pose a second-order factor in shaping upper plate morphology near the trench.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-01-22
    Description: This paper describes a 3-D lithospheric density model of the Western Continental Margin of India (WCMI) based on forward modelling of gravity data derived from satellite altimetry over the ocean and surface measurements on the Indian peninsula. The model covers the north-eastern Arabian Sea and the western part of the Indian Peninsula and incorporates constraints from a wide variety of geophysical and geological information. Salient features of the density model include: (1) the Moho depth varying from 13 km below the oceanic crust to 46 km below the continental interior; (2) the lithosphere–asthenosphere boundary (LAB) located at depths between 70 km in the southwestern corner (under oceanic crust) and about 165 km below the continental region; (3) thickening of the crust under the Chagos–Laccadive and Laxmi Ridges and (4) a revised definition of the continent–ocean boundary. The 3-D density structure of the region enables us to propose an evolutionary model of the WCMI that revisits earlier views of passive rifting. The first stage of continental-scale rifting of Madagascar from India at about 90 Ma is marked by relatively small amounts of magmatism. A second episode of rifting and large-scale magmatism was possibly initiated around 70 Ma with the opening of the Gop Rift. Subsequently at around 68 Ma, the drifting away of the Seychelles and formation of the Laxmi Ridge was a consequence of the down-faulting of the northern margin. During this second episode of rifting, the northern part of the WCMI witnessed massive volcanism attributed to interaction with the Reunion hotspot at around 65 Ma. Subsequent stretching of the transitional crust between about 65 and 62 Ma formed the Laxmi Basin, the southward extension of the failed Gop Rift. As the interaction between plume and lithosphere continued, the Chagos–Laccadive Ridge was emplaced on the edge of the nascent oceanic crust/rifted continental margin in the south as the Indian Plate was moving northwards.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-06
    Description: Extension of the continental lithosphere leads to the formation of rift basins and ultimately may create passive continental margins. The mechanisms that operate during the early stage of crustal extension are still intensely debated. We present the results from coincident multichannel seismic and wide-angle seismic profiles that transect across the northern Tyrrhenian Sea Basin. The profiles cross the Corsica Basin (France) to the Latium Margin (Italy) where the early-rift stage of the basin is well preserved. We found two domains, each with a distinct tectonic style, heat flow and crustal thickness. One domain is the Corsica Basin in the west that formed before the main rift phase of the northern Tyrrhenian Sea opening (∼8–4 Ma). The second domain is rifted continental crust characterized by tilted blocks and half-graben structures in the central region and at the Latium Margin. These two domains are separated by a deep (∼10 km) sedimentary complex of the eastern portion of the Corsica Basin. Travel-time tomography of wide-angle seismic data reveals the crustal architecture and a subhorizontal 15–17 ± 1 km deep Moho discontinuity under the basin. To estimate the amount of horizontal extension we have identified the pre-, syn-, and post-tectonic sedimentary units and calculated the relative displacement of faults. We found that major faults initiated at angles of 45°–50° and that the rifted domain is horizontally stretched by a factor of β ∼ 1.3 (∼8–10 mm/a). The crust has been thinned from ∼24 to ∼17 km indicating a similar amount of extension (∼30%). The transect represents one of the best imaged early rifts and implies that the formation of crustal-scale detachments, or long-lived low-angle normal faults, is not a general feature that controls the rift initiation of continental crust. Other young rift basins, like the Gulf of Corinth, the Suez Rift or Lake Baikal, display features resembling the northern Tyrrhenian Basin, suggesting that half-graben formations and distributed homogeneous crustal thinning are a common feature during rift initiation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...