GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-02-27
    Description: Results from an interannually forced, 0.08 degrees eddy-resolving simulation based on the Hybrid Coordinate Ocean Model, in conjunction with a small but well-determined transport database, are used to investigate the currents and transports associated with the Atlantic meridional overturning circulation (AMOC) in the subpolar North Atlantic (SPNA). The model results yield a consistent warming in the western SPNA since the early 1990s, along with mean transports similar to those observed for the trans-basin AMOC across the World Ocean Circulation Experiment hydrographic section AR19 (16.4 Sv) and boundary currents at the exit of the Labrador Sea near 53 degrees N (39.0 Sv) and east of the Grand Banks near 43 degrees N (15.9 Sv). Over a 34 year integration, the model-determined AMOC across the AR19 section and the western boundary current near 53 degrees N both exhibit no systematic trend but some long-term (interannual and longer) variabilities, including a decadal transport variation of 3-4 Sv from relatively high in the 1990s to low in the 2000s. The decadal variability of the model boundary current transport near 53 degrees N lags the observed winter time North Atlantic Oscillation index by about 2 years and leads the model AMOC across the AR19 section by about 1 year. The model results also show that the long-term variabilities are low compared to those on shorter time scales. Thus, rapid sampling of the current over long time intervals is required to filter out high-frequency variabilities in order to determine the lower frequency variabilities of interest
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Pergamon Press
    In:  Deep Sea Research Part II: Topical Studies in Oceanography, 49 . pp. 1173-1195.
    Publication Date: 2020-08-05
    Description: The differences in the water mass distributions and transports in the Arabian Sea between the summer monsoon of August 1993 and the winter monsoon of January 1998 are investigated, based on two hydrographic sections along approximately 8°N. At the western end the sections were closed by a northward leg towards the African continent at about 55°E. In the central basin along 8°N the monsoon anomalies of the temperature and density below the surface-mixed layer were dominated by annual Rossby waves propagating westward across the Arabian Sea. In the northwestern part of the basin the annual Rossby waves have much smaller impact, and the density anomalies observed there were mostly associated with the Socotra Gyre. Salinity and oxygen differences along the section reflect local processes such as the spreading of water masses originating in the Bay of Bengal, northward transport of Indian Central Water, or slightly stronger southward spreading of Red Sea Water in August than in January. The anomalous wind conditions of 1997/98 influenced only the upper 50–100 m with warmer surface waters in January 1998, and Bay of Bengal Water covered the surface layer of the section in the eastern Arabian Sea. Estimates of the overturning circulation of the Arabian Sea were carried out despite the fact that many uncertainties are involved. For both cruises a vertical overturning cell of about 4–6 Sv was determined, with inflow below 2500 m and outflow between about 300 and 2500 m. In the upper 300–450 m a seasonally reversing shallow meridional overturning cell appears to exist in which the Ekman transport is balanced by a geostrophic transport. The heat flux across 8°N is dominated by the Ekman transport, yielding about –0.6 PW for August 1993, and 0.24 PW for January 1998. These values are comparable to climatological and model derived heat flux estimates. Freshwater fluxes across 8°N also were computed, yielding northward freshwater fluxes of 0.07 Sv in January 1998 and 0.43 Sv in August 1993. From climatological salinities the stronger freshwater flux in August was found to be caused by the seasonal change of salinity storage in the Arabian Sea north of 8°N. The near-surface circulation follows complex pathways, with generally cyclonic-circulation in January 1998 affected at the eastern side by the Laccadive High, and anticyclonic circulation in August 1993.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Pergamon Press
    In:  Deep Sea Research Part II: Topical Studies in Oceanography, 49 (7). pp. 1197-1210.
    Publication Date: 2020-08-05
    Description: Sea-surface height data acquired by the TOPEX/POSEIDON satellite over the Arabian Sea from October 1992 to October 1998 are analyzed. Strong seasonal fluctuations are found between 61 and 101N, which are mainly associated with westward propagating annual Rossby waves radiated from the western side of the Indian subcontinent and that are continuously forced by the action of the wind-stress curl over the central Arabian Sea. An analysis of hydrographic data acquired during August 1993 and during January 1998 at 81N in the Arabian Sea reveals the existence of first- and second-mode annual Rossby waves. These waves, which can be traced as perturbations in the density fields, have wavelengths of 12�103 and 4.4�103km as well as phase velocities of 0.38 and 0.14 m/s, respectively. The waves are associated with a time-dependent meridional overturning cell that sloshes water northward and southward. Between 581 and 681E in the central Arabian Sea, we found a Rossby-wave induced transport in the upper 500m of about 10 Sv southward in August 1993 and northward in January 1998. Below 2000 m, there was still a northward transport of 3.2 Sv in August 1993 and a southward transport of 4.8 Sv in January 1998. A comparison of steric height differences between August 1993 and January 1998 calculated from the observed density fields as well as calculated from the reconstructed density fields using first- and second-mode annual Rossby waves agree quite well with the corresponding sea-surface height differences. Implications resulting from the reflection of annual Rossby waves, like fluctuations of the western boundary currents, are discussed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 122 (3). pp. 1724-1748.
    Publication Date: 2020-02-06
    Description: Over the past 17 years, the western boundary current system of the Labrador Sea has been closely observed by maintaining the 53°N observatory (moorings and shipboard station data) measuring the top-to-bottom flow field offshore from the Labrador shelf break. Volume transports for the North Atlantic Deep Water (NADW) components were calculated using different methods, including gap filling procedures for deployment periods with suboptimal instrument coverage. On average the Deep Western Boundary Current (DWBC) carries 30.2 ± 6.6 Sv of NADW southward, which are almost equally partitioned between Labrador Sea Water (LSW, 14.9 ± 3.9 Sv) and Lower North Atlantic Deep Water (LNADW, 15.3 ± 3.8 Sv). The transport variability ranges from days to decades, with the most prominent multiyear fluctuations at interannual to near decadal time scales (±5 Sv) in the LNADW overflow water mass. These long-term fluctuations appear to be in phase with the NAO-modulated wind fluctuations. The boundary current system off Labrador occurs as a conglomerate of nearly independent components, namely, the shallow Labrador Current, the weakly sheared LSW range, and the deep baroclinic, bottom-intensified current core of the LNADW, all of which are part of the cyclonic Labrador Sea circulation. This structure is relatively stable over time, and the 120 km wide boundary current is constrained seaward by a weak counterflow which reduces the deep water export by 10–15%.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-02-25
    Description: The western boundary current system off Brazil is a key region for diagnosing variations of the Atlantic meridional overturning circulation (AMOC) and the southern subtropical cell. In July 2013 a mooring array was installed off the coast at 11°S similar to an array installed between 2000 and 2004 at the same location. Here we present results from two research cruises and the first 10.5 months of moored observations in comparison to the observations a decade ago. Average transports of the North Brazil Undercurrent and the Deep Western Boundary Current (DWBC) have not changed between the observational periods. DWBC eddies that are predicted to disappear with a weakening AMOC are still present. Upper layer changes in salinity and oxygen within the last decade are consistent with an increased Agulhas leakage, while at depths water mass changes are likely related to changes in the North Atlantic as well as tropical circulation changes.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Pergamon Press
    In:  Deep Sea Research Part II: Topical Studies in Oceanography, 49 (7-8). pp. 1297-1322.
    Publication Date: 2020-08-05
    Description: The bottom and deep circulation in the Somali Basin are investigated on the basis of hydrographic and direct velocity profiles from three shipboard surveys carried out during the southwest monsoon in 1995 and of velocity time series from the WOCE mooring array ICM7. The inflow of bottom water into the Somali Basin through the Amirante Passage drives a thermohaline circulation, which may be modulated by the monsoon wind forcing. Details of the abyssal circulation have been discussed controversially. Deep velocity records from the mooring array in the northern Somali Basin are dominated by fluctuations with periods of 30–50 days and amplitudes above Full-size image (〈1 K). Despite this strong variability annual record averages indicate the existence of a deep western boundary current (DWBC) below Full-size image (〈1 K) at the base of the continental slope south of Socotra Island as part of a cyclonic bottom circulation. The southwestward DWBC transport off Socotra Island is estimated to Full-size image (〈1 K). The bottom and deep water exchange between the Somali and Arabian Basin north of 7°N is estimated from two cross-basin geostrophic velocity sections referenced by vertically averaged LADCP currents. For the bottom water, an eastward transport into the Arabian Basin of Full-size image (〈1 K) and Full-size image (〈1 K) was determined in June and August, respectively, while for the deep-water layer above Full-size image (〈1 K) eastward transports of Full-size image (〈1 K) in June and Full-size image (〈1 K) in August were obtained.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-03-09
    Description: Long‐term observations from a 17 year long mooring array at the exit of the Labrador Sea at 53°N are compared to the output of a high‐resolution model (VIKING20). Both are analyzed to define robust integral properties on basin and regional scale, which can be determined and evaluated equally well. While both, the observations and the model, show a narrow DWBC cyclonically engulfing the Labrador Sea, the model's boundary current system is more barotropic than in the observations and spectral analysis indicates stronger monthly to interannual transport variability. Compared to the model, the observations show a stronger density gradient, hence a stronger baroclinicity, from center to boundary. Despite this, the observed temporal evolution of the temperature in the central Labrador Sea is reproduced. The model results yield a mean export of North Atlantic Deep Water (NADW) (33.0 +/‐ 5.7 Sv), which is comparable to the observed transport (31.2 +/‐ 5.5 Sv) at 53°N. The results also include a comparable spatial pattern and March mixed layer depth in the central Labrador Sea (maximum depth ∼ 2000 m). During periods containing enhanced deep convection (1990's) our analyses show increased correlation between LSW and LNADW model transport at 53°N. Our results indicate that the transport variability in LSW and LNADW at 53°N is a result of a complex modulation of wind stress and buoyancy forcing on regional and basin wide scale.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...