GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2015-12-22
    Beschreibung: Environmental context: Halocarbons are trace gases important in atmospheric ozone chemistry whose biogenic production – among other factors – depends on light-induced stress of marine algae. Several studies have confirmed this effect in laboratory experiments but knowledge in natural systems remains sparse. In mesocosm experiments, which are a link between field and laboratory studies, we observed that the influence of natural levels of ultraviolet radiation on halocarbon dynamics in the marine surface waters was either insignificant or concealed by the complex interactions in the natural systems. Abstract: The aim of the present study was to evaluate the influence of different light quality, especially ultraviolet radiation (UVR), on the dynamics of volatile halogenated organic compounds (VHOCs) at the sea surface. Short term experiments were conducted with floating gas-tight mesocosms of different optical qualities. Six halocarbons (CH3I, CHCl3, CH2Br2, CH2ClI, CHBr3 and CH2I2), known to be produced by phytoplankton, together with a variety of biological and environmental variables were measured in the coastal southern Baltic Sea and in the Raunefjord (North Sea). These experiments showed that ambient levels of UVR have no significant influence on VHOC dynamics in the natural systems. We attribute it to the low radiation doses that phytoplankton cells receive in a normal turbulent surface mixed layer. The VHOC concentrations were influenced by their production and removal processes, but they were not correlated with biological or environmental parameters investigated. Diatoms were most likely the dominant biogenic source of VHOCs in the Baltic Sea experiment, whereas in the Raunefjord experiment macroalgae probably contributed strongly to the production of VHOCs. The variable stable carbon isotope signatures (δ13C values) of bromoform (CHBr3) also indicate that different autotrophic organisms were responsible for CHBr3 production in the two coastal environments. In the Raunefjord, despite strong daily variations in CHBr3 concentration, the carbon isotopic ratio was fairly stable with a mean value of –26 ‰. During the declining spring phytoplankton bloom in the Baltic Sea, the δ13C values of CHBr3 were enriched in 13C and showed noticeable diurnal changes (–12 ‰ ± 4). These results show that isotope signature analysis is a useful tool to study both the origin and dynamics of VHOCs in natural systems.
    Materialart: Article , PeerReviewed
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    Springer-Verlag
    In:  In: Marine Mesocosms: Biological and Chemical Research in Experimental Ecosystems. , ed. by Grice, G. D. and Reeve, M. R. Springer-Verlag, New York, Heidelberg, Berlin, pp. 205-216.
    Publikationsdatum: 2016-07-20
    Beschreibung: Neritic ecosystems in the boreal zone generally maintain more plankton biomass over a longer period of the year than off-shore systems in the same latitude. Productivity is higher particularly during the summer stratification, between the spring and autumn phytoplankton blooms brought about by nutrients from sources other than pelagic remineralization. Plankton biomass levels maintained by recycling within a pelagic system tend to decrease with time if limiting nutrients bound in sedimenting particles are not replenished. In neritic environments, surface waters can receive nutrients from the land, but depending on water depth and local weather and geomorphology, replenishment can also come from nutrient-rich subthermocline water and sediments. In deeper bodies of water with a steep coastline, such as fjords, the sediment contribution will be less important (Takahashi et al. 1977) than in shallow water systems with more of their sediment surface within the euphotic zone (von Bodungen et al. 1975, Rowe et al. 1975).
    Materialart: Book chapter , NonPeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...