GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-09-23
    Description: Sea surface temperatures (SSTs) in the eastern tropical Atlantic are crucial for climate variability within the tropical belt. Despite this importance, state-of-the-art climate models show a large SST warm bias in this region. Knowledge about the seasonal mixed layer (ML) heat budget is a prerequisite for understanding SST mean state and its variability. Within this study all contributions to the seasonal ML heat budget are estimated at four locations within the Atlantic cold tongue (ACT) that are representative for the western (0°N, 23°W), central (0°N, 10°W) and eastern (0°N, 0°E) equatorial as well as the southern (10°S, 10°W) ACT. To estimate the contribution of the diapycnal heat flux due to turbulence an extensive data set of microstructure observations collected during ten research cruises between 2005 and 2012 is analyzed. The results for the equatorial ACT indicate that with the inclusion of the diapycnal heat flux the seasonal ML heat budget is balanced. Within the equatorial region, the diapycnal heat flux is essential for the development of the ACT. It dominates over all other cooling terms in the central and eastern equatorial ACT, while it is of similar size as the zonal advection in the western equatorial ACT. In contrast, the SST evolution in the southern ACT region can be explained entirely by air-sea heat fluxes.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Springer
    In:  In: Handbook on Marine Environment Protection. , ed. by Solomon, M. and Markus, T. Springer, Cham, Switzerland, pp. 3-35. ISBN 978-3-319-60156-4
    Publication Date: 2019-01-10
    Description: The fundamental basis to understand the distribution and variability of abiotic variables within the oceans such as e.g. temperature and salinity are the underlying physical dynamics. These dynamics depend on the setting of the ocean basins and external forcing mechanisms. In this chapter water mass characteristics and their formation processes are described as well as fundamental principles, which set the oceans into motion. These fundamentals are the premise to understand possible future climate changes, the distribution and evolution of marine ecosystems and related economic interests and conflicts
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-23
    Description: A one-dimensional model is used to analyze, at the local scale, the response of the equatorial Atlantic Ocean under different meteorological conditions. The study was performed at the location of three moored buoys of the Pilot Research Moored Array in the Tropical Atlantic located at 10° W, 0° N; 10° W, 6° S; and 10° W, 10° S. During the EGEE-3 (Etude de la circulation océanique et de sa variabilité dans le Golfe de Guinee) campaign of May-June 2006, each buoy was visited for maintenance during 2 days. On board the ship, high-resolution atmospheric parameters were collected, as were profiles of temperature, salinity, and current. These data are used here to initialize, force, and validate a one-dimensional model in order to study the diurnal oceanic mixed-layer variability. It is shown that the diurnal variability of the sea surface temperatures is mainly driven by the solar heat flux. The diurnal response of the near-surface temperatures to daytime heating and nighttime cooling has an amplitude of a few tenths of degree. The computed diurnal heat budget experiences a net warming tendency of 31 and 27 W m‑2 at 0° N and 10° S, respectively, and a cooling tendency of 122 W m‑2 at 6° S. Both observed and simulated mixed-layer depths experience a jump between the nighttime convection phase and the well-stabilized diurnal water column. Its amplitude changes dramatically depending on the meteorological conditions occurring at the stations and reaches its maximum amplitude (~50 m) at 10° S. At 6° and 10° S, the presence of barrier layers is observed, a feature that is clearer at 10° S. Simulated turbulent kinetic energy (TKE) dissipation rates, compared to independent microstructure measurements, show that the model tracks their diurnal evolution reasonably well. It is also shown that the shear and buoyancy productions and the vertical diffusion of TKE all contribute to the supply of TKE, but the buoyancy production is the main source of TKE during the period of the simulation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...