GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • San Diego :Elsevier,  (1)
  • 2020-2024  (1)
Publikationsart
Verlag/Herausgeber
  • San Diego :Elsevier,  (1)
Sprache
Erscheinungszeitraum
  • 2020-2024  (1)
Jahr
  • 1
    Online-Ressource
    Online-Ressource
    San Diego :Elsevier,
    Schlagwort(e): Cosmochemistry. ; Planets-Water. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (846 pages)
    Ausgabe: 1st ed.
    ISBN: 9780323957182
    DDC: 523.02
    Sprache: Englisch
    Anmerkung: Front cover -- Half title -- Full title -- Copyright -- Dedication -- Contents -- Foreword -- Preface -- Acknowledgments -- Chapter 1 - Solar/planetary formation and evolution -- 1.1 Planet formation -- 1.1.1 Terrestrial planet formation -- 1.1.2 Giant planet formation -- 1.2 Asteroids, meteorites, and chondrites -- 1.3 Giant-impact theory on the origin of Earth's Moon -- 1.3.1 Single giant impact theory -- 1.3.2 Multiple giant impact theory -- 1.3.3 The concept of lunar magma ocean (LMO) of global dimensions -- 1.4 Influence of Moon-forming impacts on the environmental conditions on the early Earth -- 1.5 Earth's internal structure, development, orbit, and rotation -- 1.5.1 Influence of collisions -- 1.5.2 Features of Earth's core -- 1.5.3 Earth's paleo-rotation and revolution-day: ∼21 h -- year: ∼13 months and ∼400 days -- 1.5.4 Earth's inclination and orbit -- 1.6 Water and frost line in the astrophysical environments -- 1.6.1 Water in the protoplanetary disk of the Sun -- 1.6.2 Frost line -- 1.6.3 Water stored on the surface and in the ground of modern Earth -- 1.7 Water-abundant celestial bodies in the Solar System-brief overview -- 1.8 Importance of understanding Earth's oceans in the search for life in extraterrestrial ocean worlds-NASA's ocean worlds ... -- 1.9 Importance of radiogenic heating and tidal dissipation in the generation and sustenance of extraterrestrial subsurface ... -- 1.10 Shedding light on extraterrestrial bodies-role of astronomical research -- References -- Bibliography -- Chapter 2 - Geological timeline of significant events on Earth -- 2.1 An era from 4.5 to 4 billion years ago when the entire Earth was a "Fire Ball" -- 2.2 Importance of greenhouse gases in the atmosphere of the early Earth -- 2.3 Genesis of water on Earth -- 2.3.1 Water on Earth through mantle evolution. , 2.3.2 Water brought to Earth by comets and asteroids -- 2.4 Indispensability of water, biologically important chemical elements, and energy to sustain life as we know it -- 2.5 Formation of liquid water oceans on Earth about 3.8 billion years ago -- 2.6 Importance of deuterium to hydrogen ratio of water -- 2.7 Roles of Earth's Moon and Sun in generating tides-influences of local bathymetry and shoreline boundary on modifying t ... -- 2.7.1 General characteristics of tidal oscillations -- 2.7.2 Topographical influences on tidal range and tidal pattern -- 2.7.3 Tidal bore-wall of tumbling and foaming water waves in some geometrically special water bodies during a spring tide ... -- 2.7.4 Tidal currents-their role in mixing of ocean waters -- 2.7.5 Implications of coastal tides and tidal bores -- 2.8 Appearance of microbes on Earth about 3.7 billion years ago -- 2.9 Stromatolites appearing on Earth about 3.5 billion years ago -- 2.10 Initiation of plate tectonics on Earth between 3.5 and 3.3 billion years ago -- 2.11 The great oxidation event ∼2.4-2.0 billion years ago-an event that led to the banded iron formations and the rise of ... -- 2.12 An era when the entire Earth became fully covered with thick ice ∼750-635 million years ago-"Snowball Earth" hypothesis -- 2.13 Multiple mass extinction events on Earth-important for understanding life -- 2.13.1 Ordovician-Silurian extinction: ∼440 million years ago -- 2.13.2 Late Devonian extinction: ∼365 million years ago -- 2.13.3 Permian-Triassic extinction: ∼253 million years ago -- 2.13.4 Triassic-Jurassic extinction: ∼201 million years ago -- 2.13.5 The K-Pg extinction: ∼66 million years ago: extinction of dinosaurs from Earth and subsequent appearance of modern ... -- 2.14 Carbonate-silicate cycle and its role as a dynamic climate buffer. , 2.15 Occurrence of a sharp global warming ∼56 million years ago -- 2.15.1 Consequences -- 2.15.2 Causes -- 2.15.2.1 Volcanic eruptions and seaquakes ∼56 million years ago-Greenland and North America drifting away from Europe, res ... -- 2.15.2.2 Methane hydrates emission -- 2.15.2.3 Orbitally triggered (Milankovitch cycles) decomposition of soil organic carbon in polar permafrost -- 2.16 Volcano eruptions on land causing atmospheric cooling and those happening underwater causing abnormal atmospheric warming -- 2.17 Synthesis of marine proxy temperature data across the Paleocene-Eocene thermal maximum -- 2.18 Fate of excess carbon released during the Paleocene-Eocene thermal maximum event -- References -- Bibliography -- Chapter 3 - Beginnings of life on Earth -- 3.1 Origins of life and potential environments-multiple hypotheses on chemical evolution preceding biological evolution -- 3.1.1 Lightning in the early atmosphere and the consequent production of amino acids-Miller-Urey "prebiotic soup" experiment -- 3.1.2 Chemical processes at submarine hydrothermal vents -- 3.1.2.1 Significance of hydrothermal vents in the origin of life -- 3.1.2.2 Functional resemblance of iron‐sulfide membrane in alkaline hydrothermal -- 3.1.3 Life brought to Earth from elsewhere in space -- 3.2 Biological evolution -- 3.2.1 Discovery of DNA and its sequencing-the intriguing story of combined efforts by a group of scientists from different ... -- 3.2.1.1 Isolating nucleic acid-Johannes Friedrich Miescher: the first scientist -- 3.2.1.2 DNA sequencing-contributions of Frederick Sanger, Francis Crick, and James D. Watson -- 3.2.2 Role of National Human Genome Research Institute (NHGRI) in supporting development of new technologies for DNA seque ... -- 3.2.3 Discovery of RNA and its sequencing- a combined effort by a group of researchers. , 3.2.3.1 mRNA -- 3.2.3.2 tRNA -- 3.2.3.3 rRNA -- 3.2.3.4 Sequencing RNA -- 3.2.4 Genome sequencing -- 3.2.5 Dark DNA -- 3.2.6 Categorization of all living organisms into two major divisions: the cellular and the viral "empires" and three prim ... -- 3.2.6.1 Cells, viruses, and the classification of organisms -- 3.2.6.2 The cellular domains: archaea, bacteria, and eukarya -- 3.2.6.3 Viruses -- 3.3 Origins of life on Earth-importance of organic molecules -- 3.4 Life and living systems-interpretations -- 3.5 Why do a few million years or more are necessary for evolution from prebiotic chemical phase to biological phase? -- 3.6 Understanding the evolution of life -- 3.7 Influence of thermodynamic disequilibrium on life -- 3.8 Extraterrestrial life in the Solar System-implications of Kumar's hypothesis -- 3.9 Looking for possibility of extraterrestrial life in the Solar System-deriving clues from early Earth's conducive atmos ... -- References -- Bibliography -- Chapter 4 - Biosignatures-The prime targets in the search for life beyond Earth -- 4.1 Life -- 4.2 Use of fossil lipids for life-detection -- 4.3 Biosignatures -- 4.3.1 Biosignatures of microorganisms -- 4.3.2 Chemical biosignatures -- 4.3.3 Morphological biosignatures -- 4.4 Serpentinization-implications for the search for biosignatures -- 4.5 Biosignatures versus bioindicators -- 4.6 Life and biomarkers -- 4.6.1 Biomarker -- 4.6.2 The search for life on Mars -- 4.6.3 A potential biomarker identified on Venus -- 4.7 Identification of biosignature in Antarctic rocks -- 4.8 Existence of biosignatures under diverse environmental conditions -- 4.9 Characterizing extraterrestrial biospheres through absorption features in their spectra -- 4.10 Means of studying biosignatures. , 4.10.1 Identification of stromatolites using portable network graphics analysis of layered structures captured in digital ... -- 4.10.2 Characterization of molecular biosignatures using time-of-flight secondary ion mass spectrometry -- 4.10.2.1 Advantage of time-of-flight secondary ion mass spectrometry over other techniques for obtaining biomarker information -- 4.10.2.2 Generic scheme of a time-of-flight secondary ion mass spectrometry experiment -- 4.10.2.3 Demonstration of potential of time-of-flight secondary ion mass spectrometry for biomarker research -- 4.11 Detecting biosignature gases on extrasolar terrestrial planets -- 4.12 False positives and false negatives -- 4.13 Potential biosignatures-molecules that can be produced under both biological and nonbiological mechanisms but selecti ... -- 4.14 Atmospheric chemical disequilibrium (a generalized biosignature)-a proposed method for detecting extraterrestrial bio ... -- 4.15 Identification of amino acids in Murchison meteorite and Atarctic micrometeorites -- 4.16 Major challenges lurking in the study of extrasolar biosignature gases -- References -- Bibliography -- Chapter 5 - Extremophiles-Organisms that survive and thrive in extreme environmental conditions -- 5.1 Relevance of astrobiology -- 5.2 Habitability -- 5.3 Importance of liquid water in maintaining habitability on celestial bodies -- 5.4 Habitability of extremophilic and extremotolerant bacteria under extreme environmental conditions -- 5.5 Why do extremophiles survive in extreme environments? Application of exopolymers derived from extremophiles in the foo ... -- 5.6 Microbial life on and inside rocks -- 5.7 Microbial life beneath the seafloor -- 5.8 Microbial life in Antarctic ice sheet -- 5.9 The year-2021 discovery of sessile benthic community far beneath an Antarctic ice shelf. , 5.10 Microbial life at the driest desert in the world.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...