GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Pergamon Press
    In:  Journal of Structural Geology, 9 (5-6). pp. 659-666.
    Publication Date: 2018-01-17
    Description: The orientation of shear bands relative to foliations defined by elongated mineral aggregates, is often used to determine the large-scale sense of displacement in ductile faults. Data from contact strain zones at the bases of large overthrust complexes in the Eastern Alps and the Betic Cordilleras demonstrate that there is not always a simple geometrical relation between shear band orientation and sense of vorticity in bulk non-coaxial flow. In addition to single shear band sets that show displacements synthetic with the large-scale displacement, there are single sets with antithetic displacements, and conjugate sets. The last two observations are at variance with published data and interpretations, and cast doubts on the general applicability of shear bands as indicators of large scale flow kinematics.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-01-17
    Description: The microstructures and crystal fabrics associated with the development of an amphibolite facies quartzo-feldspathic mylonitic shear zone (Torridon, NW Scotland) have been investigated using SEM electron channelling. Our results illustrate a variety of microstructures and fabrics which attest to a complex shear zone deformation history. Microstructural variation is particularly pronounced at low shear strains: significant intragranular deformation occurs via a domino-faulting style process, whilst mechanical incompatibilities between individual grains result in characteristic grain boundary deformation accommodation microstructures. A sudden reduction in grain size defines the transition to medium shear strains, but many of the boundaries inherited from the original and low shear strain regions can still be recognized and define distinctive bands oriented at low angles to the shear zone margin. Grains within these bands have somewhat steeper preferred dimensional orientations. These domains persist into the high shear strain mylonitic region, where they are oriented subparallel to the shear zone margin and consist of sub-20 μm grains. The microstructures suggest that the principal deformation mechanism was intracrystalline plasticity (with contributions from grain size reduction via dynamic recrystallization, grain boundary migration and grain boundary sliding). Crystal fabrics measured from the shear zone vary with position depending on the shear strain involved, and are consistent with the operation of several crystal slip systems (e.g. prism, basal, rhomb and acute rhomb planes) in a consistent direction (probably parallel to a and/or m). They also reveal the presence of Dauphine twinning and suggest that this may be a significant process in quartz deformation. A single crystal fabric evolution path linking the shear zone margin fabric with the mylonitic fabric was not observed. Rather, the mylonitic fabric reflects the instantaneous fabric which developed at a particular location for a particular shear strain and original parental grain orientation. The mature shear zone therefore consists of a series of deformed original grains stacked on top of each other in a manner which preserves original grain boundaries and intragranular features which develop during shear zone evolution. The stability of some microstructures to higher shear strains, the exploitation of others at lower shear strains, and a continuously evolving crystal fabric, mean that the strain gradient observed across many shear zones is unlikely to be equivalent to a time gradient.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-02-01
    Description: The Eclogite Zone, of the Tauern Window is an exhumed subduction channel comprising eclogites with different grades of retrogression in a matrix of high-pressure metasediments. The rocks were exposed to 600 °C and 20–25 kbars, and then retrogressed during their exhumation, first under blueschist facies and later under amphibolite facies metamorphism. To gain insights into the deformation within the subduction channel during subduction and exhumation, both fresh and retrogressed eclogites, as well as the surrounding metasediments were investigated with respect to their deformation microstructures and crystallographic preferred orientations (CPOs). Pristine and retrogressed eclogites show grain boundary migration and subgrain rotation recrystallization microstructures in omphacite. A misorientation axes analysis reveals the activity of complementary deformation mechanisms including grain boundary sliding and dislocation creep. The omphacite CPOs of the eclogites correspond to dominant SL-fabrics characteristic of plane strain deformation, though there are local variations towards flattening or constriction within the paleosubduction channel. The glaucophane CPOs in retrogressed eclogites match those of omphacite, suggesting that a constant strain geometry persisted during exhumation at blueschist facies conditions. Plastic deformation of the host high-pressure metasediments outlasted that of the eclogites, as indicated by white mica fabrics and quartz CPO. The latter is consistently asymmetric, pointing to the operation of non-coaxial deformation. The microstructures and CPO data indicate a continuous plastic deformation cycle with eclogite and blueschist facies metamorphism related to subduction and exhumation of the different rock units.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...