GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • PANGAEA  (400)
Publikationsart
Schlagwörter
Erscheinungszeitraum
  • 1
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Flower, Martin F J; Pritchard, R G; Schmincke, Hans-Ulrich; Robinson, Paul T (1983): Geochemistry of basalts: Deep Sea Drilling Project Sites 482, 483, and 485 near the Tamayo Fracture Zone, Gulf of California. In: Lewis, BTR; Robinson, P; et al. (eds.), Initial Reports of the Deep Sea Drilling Project (U.S. Govt. Printing Office), 65, 559-578, https://doi.org/10.2973/dsdp.proc.65.126.1983
    Publikationsdatum: 2023-05-12
    Beschreibung: Recent investigations of the southern Gulf of California (22°N) on Leg 65 of the Deep Sea Drilling Project (DSDP) allow important comparisons with drilled sections of ocean crust formed at different spreading rates. During Leg 65 the Glomar Challenger drilled seven basement holes at sites forming a transect across the ridge axis near the Tamayo Fracture Zone. An additional site was drilled on the fracture zone itself, where a small magnetic "diapir" was located. Together with the material from Site 474 (drilled during Leg 64) the cores recovered at these sites are representative of the upper basaltic and sedimentary crust formed since the initial opening of the Gulf. The pattern of magmatic accretion at the ridge axis is conditioned by the moderate to high rate of spreading (~6 cm/y.) and comparatively high sedimentation rates that now characterize the Gulf of California. In terms of spreading rate, this region is intermediate between the "superfast" East Pacific Rise axis to the south (up to 17 cm/y.) and the slow-spreading Mid-Atlantic Ridge (2-4 cm/y.) both of which have been extensively studied by dredging and drilling.
    Schlagwort(e): Deep Sea Drilling Project; DSDP
    Materialart: Dataset
    Format: application/zip, 4 datasets
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Viereck, L G; Simon, M; Schmincke, Hans-Ulrich (1986): Primary composition, alteration, and origin of Cretaceous volcaniclastic rocks, East Mariana Basin (Site 585, Leg 89). In: Moberly, R; Schlanger, SO; et al. (eds.), Initial Reports of the Deep Sea Drilling Project, Washington (U.S. Govt. Printing Office), 89, 529-553, https://doi.org/10.2973/dsdp.proc.89.121.1986
    Publikationsdatum: 2023-05-12
    Beschreibung: An upper Aptian to middle Albian series of volcaniclastic rocks more than 300 m thick was drilled at Site 585 in the East Mariana Basin. On the basis of textural and compositional (bulk-rock chemistry, primary and secondary mineral phases) evidence, the volcaniclastic unit is subdivided into a lower (below 830 m sub-bottom) and an upper (about 670-760 m) sequence; the boundary in the interval between is uncertain owing to lack of samples. The rocks are dominantly former vitric basaltic tuffs and minor lapillistones with lesser amounts of crystals and basaltic lithic clasts. They are mixed with shallow-water carbonate debris (ooids, skeletal debris), and were transported by mass flows to their site of deposition. The lower sequence is mostly plagioclase- and olivine-phyric with lesser amounts of Ti-poor clinopyroxene. Mineralogical and bulk-rock chemical data indicate a tholeiitic composition slightly more enriched than N-MORB (normal mid-ocean ridge basalt). Transport was by debris flows from shallow-water sites, as indicated by admixed ooids. Volcanogenic particles are chiefly moderately vesicular to nonvesicular blocky shards (former sideromelane) and less angular tachylite with quench plagioclase and pyroxene, indicating generation of volcanic clasts predominantly by spalling and breakage of submarine pillow and/or sheet-flow lavas. The upper sequence is mainly clinopyroxene- and olivine-phyric with minor plagioclase. The more Ti-rich clinopyroxene and the bulk-rock analyses show that the moderately alkali basaltic composition throughout is more mafic than the basal tholeiitic sequence. Transport was by turbidity currents. Rounded epiclasts of crystalline basalts are more common than in the lower sequence, and, together with the occurrence of oxidized olivine pseudomorphs and vesicular tachylite, are taken as evidence of derivation from eroded subaerially exposed volcanics. Former sideromelane shards are more vesicular than in the lower sequence; vesicularity exceeds 60 vol.% in some clasts. The dominant clastic process is interpreted to be by shallow-water explosive eruptions. All rocks have undergone low-temperature alteration; the dominant secondary phases are "palagonite," chlorite/smectite mixed minerals, analcite, and chabazite. Smectite, chlorite, and natrolite occur in minor amounts. Phillipsite is recognized as an early alteration product, now replaced by other zeolites. During alteration, the rocks have lost up to 50% of their Ca, compared with a fresh shard and fresh glass inclusions in primary minerals, but have gained much less K, Rb, and Ba than expected, indicating rapid deposition prior to significant seafloor weathering.
    Schlagwort(e): Deep Sea Drilling Project; DSDP
    Materialart: Dataset
    Format: application/zip, 11 datasets
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Jenner, G A; Hertogen, J; Sachtleben, T; Schmincke, Hans-Ulrich (1985): Isotopic and trace element composition of basalts from Sites 556-559 and 561-564: Constraints on some processes affecting their composition. In: Bougault, H; Cande, SC; et al. (eds.), Initial Reports of the Deep Sea Drilling Project, Washington (U.S. Govt. Printing Office), 82, 501-507, https://doi.org/10.2973/dsdp.proc.82.126.1985
    Publikationsdatum: 2023-05-12
    Beschreibung: Sr and Nd isotopic composition of 23 basalts from Sites 556-559 and 561-564. are reported. The 87Sr/86Sr ratios in fresh glasses and leached whole rocks range from 0.7025 to 0.7034 and are negatively correlated with the initial 143Nd/ 144Nd compositions, which range from 0.51315 to 0.51289. The Sr and Nd isotopic compositions (in glasses or leached samples) lie within the fields of mid-ocean ridge basalts (MORB) and ocean island basalts (OIB) from the Azores on the Nd-Sr mantle array/fan plot. In general, there is a correlation between the trace element characteristics and the 143Nd/144Nd composition (i.e., samples with Hf/Ta〉7 and (Ce/Sm)N〈1 [normal-MORB] have initial 143Nd/144Nd〉0.51307, whereas samples with Hf/Ta〈7 and (Ce/Sm)N〉1 (enriched-MORB) have initial 143Nd/144Nd compositions 〈0.51300). A significant deviation from this general rule is found in Hole 558, where the N-MORB can have, within experimental limits, identical isotopic compositions to those found in associated E-MORB. The plume-depleted asthenosphere mixing hypothesis of Schilling (1975), White and Schilling (1978) and Schilling et al. (1977) provides a framework within which the present data can be evaluated. Given the distribution and possible origins of the chemical and isotopic heterogeneity observed in Leg 82 basalts, and some other basalts in the area, it would appear that the Schilling et al. model is not entirely satisfactory. In particular, it can be shown that trace element data may incorrectly estimate the plume component and more localized mantle heterogeneity (both chemical and isotopic) may be important.
    Schlagwort(e): Deep Sea Drilling Project; DSDP
    Materialart: Dataset
    Format: application/zip, 3 datasets
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Hertogen, J; Sachtleben, T; Schmincke, Hans-Ulrich; Jenner, G A (1985): Trace element geochemistry and petrogenesis of basalts from Deep Sea Drilling Project Sites 556-559 and 561-564. In: Bougault, H; Cande, SC; et al. (eds.), Initial Reports of the Deep Sea Drilling Project, Washington (U.S. Govt. Printing Office), 82, 449-457, https://doi.org/10.2973/dsdp.proc.82.122.1985
    Publikationsdatum: 2023-05-12
    Beschreibung: Forty-three samples from DSDP Holes 556-559 and 561-564 were analyzed for rare earth elements (REE), Sc, Cr, Co, Hf, Ta, and Th by instrumental neutron activation analysis. The recovered basalts range from those depleted in light REE (LREE) to those enriched in LREE. The two types of basalts occur together in Holes 558 and 561. The depleted basalts have remarkably constant La/Yb, La/Sm, and La/Ti ratios and apparently derive from a large, homogeneous, mantle source underneath a segment (1200 km long) of the Mid-Atlantic Ridge. The almost twofold variation in the concentrations of incompatible trace elements in the depleted basalts is primarily due to different degrees of batch partial melting. The variation of highly to moderately incompatible elements in the Leg 82 enriched basalts can be successfully explained in terms of source mixing between depleted mantle sources and alkaline or nephelinitic magmas similar to Azores Islands magmas. However, the correlation of LREE enrichment with distance from the Azores Triple Junction is tenuous at best, and the enriched alkaline component is probably not directly related to the Azores volcanism.
    Schlagwort(e): Deep Sea Drilling Project; DSDP
    Materialart: Dataset
    Format: application/zip, 2 datasets
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Simon, M; Schmincke, Hans-Ulrich (1984): Late Cretaceous volcaniclastic rocks from the Walvis Ridge, Southeast Atlantic, Leg 74. In: Moore, TC Jr; Rabinowitz, PD; et al. (eds.), Initial Reports of the Deep Sea Drilling Project (U.S. Govt. Printing Office), 74, 765-791, https://doi.org/10.2973/dsdp.proc.74.127.1984
    Publikationsdatum: 2023-06-27
    Beschreibung: Volcaniclastic rocks of Late Cretaceous age occur in four out of five sites (525, 527, 528, 529) drilled on the crest and the northwest flank of the Walvis Ridge during Leg 74. They are mostly interlayered with and overlie basement in the lowermost 10-100 m of the sedimentary section. Rocks from Holes 525A and 528 were studied megascopically and microscopically, by XRD, and XRF chemical analyses of whole-rock major and trace elements were undertaken. The dominant rock of Hole 528 volcaniclastics is a fine-grained (silt to fine sand), mostly matrix-bearing (partly matrix-rich) vitric "tuff," occurring as 5-110 cm thick, partly graded layers, some of which are distinctly bedded. Volcaniclastics of Hole 525A are generally richer in sanidine crystals. Most rocks contain some nonvolcanic clasts, chiefly foraminifers and lesser amounts of shallow-water fossil debris. Scoria shards, clasts of tachylite, and fine-grained basalts as well as chemical analyses suggest a basaltic to intermediate composition for most rocks of Hole 528, whereas volcaniclastics of Hole 525A are more silicic. The occurrence of tachylite and epiclastic, coarse-grained, basaltic clasts throughout the volcaniclastic sequence at Site 528 indicates shallow-water eruptions and perhaps even ocean island volcanism. The minor occurrence in Hole 528 of trachytic? pumice shards with phenocrysts of K-feldspar and the abundance of such shards in rocks from Hole 525A indicate Plinian eruptions characteristic of more mature stages of ocean island evolution. The sedimentary structures of volcaniclastic layers and their occurrence within deep sea calcareous oozes indicate a mass flow origin. Diagenetic alteration of the volcaniclastic rocks is pronounced, and four major stages of glass shard alteration are distinguished. Despite the effects of alteration and small-scale redistribution of elements and the admixture of nonvolcanic components, there were no drastic changes in the chemical composition of the rocks, except for pronounced increases in K and Rb and decreases in Ca and Fe. The basaltic volcaniclastic rocks very much resemble basement basalts in that they are moderately evolved tholeiites derived from an LIL-enriched mantle source with Zr/Nb ratios (Hole 528) of 5 to 6. This, in conjunction with the interbedding of volcaniclastic rocks and basement lavas, indicates contemporaneous seamount or island and basement volcanic activity involving magmas derived from similar sources.
    Schlagwort(e): 74-525A; 74-528; Deep Sea Drilling Project; DRILL; Drilling/drill rig; DSDP; Glomar Challenger; Leg74; South Atlantic/CREST; South Atlantic/RIDGE
    Materialart: Dataset
    Format: application/zip, 4 datasets
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Schmincke, Hans-Ulrich (1983): Ash layers, hyaloclastite, and alteration of basaltic glass, Leg 65. In: Lewis, BTR; Robinson, P; et al. (eds.), Initial Reports of the Deep Sea Drilling Project (U.S. Govt. Printing Office), 65, 477-483, https://doi.org/10.2973/dsdp.proc.65.121.1983
    Publikationsdatum: 2023-06-27
    Beschreibung: Three types of tephra deposits were recovered on Leg 65 of the Deep Sea Drilling Project (DSDP) from three drill sites at the mouth of the Gulf of California: (1) a series of white ash layers at Sites 483, 484, and 485; (2) a layer of plagioclase- phyric sideromelane shards at Site 483; and (3) an indurated, cross-bedded hyaloclastite in Hole 483B. The ash layers in (1) are composed of colorless, fresh rhyolitic glass shards with minor dacitic and rare basaltic shards. These are thought to be derived from explosive volcanoes on the Mexican mainland. Most of the shards in (2) are fresh, but some show marginal to complete alteration to palagonite. The composition of the glass is that of a MORB-type tholeiite, low in Fe and moderately high in Ti, and possibly erupted from off-axis seamounts. Basaltic glass shards occurring in silt about 45 meters above the basement at Site 484 A in the Tamayo Fracture Zone show a distinctly alkalic composition similar to that of the single basement basalt specimen drilled at this site. The hyaloclastite in (3) is made up chiefly of angular sideromelane shards altered to smectite and zeolites (mainly phillipsite) and minor admixtures of terrigenous silt. A very high K and Ba content indicates significant uptake of at least these elements from seawater. Nevertheless, the unusual chemical composition of the underlying massive basalt flow is believed to be reflected in that of the hyaloclastite. This is a powerful argument for interpreting the massive basalt as a surface flow rather than an intrusion. Glass alteration is different in the glassy margins of flows than in thicker glassy pillow rinds. Also, it appears to proceed faster in coarse- than fine-grained sediments.
    Schlagwort(e): 65-483; 65-483B; 65-483C; 65-484A; 65-485; 65-485A; Deep Sea Drilling Project; DRILL; Drilling/drill rig; DSDP; Glomar Challenger; Leg65; North Pacific/Gulf of California/CONT RISE; North Pacific/Gulf of California/DIAPIR; North Pacific/Gulf of California/SEDIMENT POND
    Materialart: Dataset
    Format: application/zip, 4 datasets
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Staudigel, Hubert; Hart, Stanley R; Schmincke, Hans-Ulrich; Smith, Brian M (1989): Cretaceous ocean crust at DSDP sites 417 and 418: Carbon uptake from weathering versus loss by magmatic outgassing. Geochimica et Cosmochimica Acta, 53(11), 3091-3094, https://doi.org/10.1016/0016-7037(89)90189-0
    Publikationsdatum: 2023-06-27
    Beschreibung: Ocean crustal carbon uptake during seafloor alteration at DSDP Sites 417A, 417D, and 418A exceeds the estimated loss of carbon during magmatic ridge outgassing. If these sites are representative for oceanic crust in general, 2.2-2.9 x 10**12 moles of carbon are removed from the oceans per year as a net flux of carbon between the oceanic crust and seawater. Although most of this carbon occurs as calcium carbonate, this ocean crustal carbonate probably cannot be considered part of the marine calcium carbonate sink since much of the Ca in these carbonates must be derived from basalt alteration that is not balanced by a concomitant uptake of seawater Mg. Our present estimate cannot be satisfactorily applied to global carbon budgets, because of uncertainties in the bulk Ca/Mg budget of ocean floor alteration and because of the uniqueness of our estimate. Yet, our data document that the formation of ocean crust provides a significant sink for carbon that should be included in models of the global cycling of carbon. Furthermore, magmatic outgassing during ocean crust emplacement and seafloor basalt alteration may provide a buffering mechanism for atmospheric carbon.
    Schlagwort(e): 51-417A; 51-417D; 52-418A; Carbon dioxide; Deep Sea Drilling Project; DEPTH, sediment/rock; DRILL; Drilling/drill rig; DSDP; DSDP/ODP/IODP sample designation; Event label; Glomar Challenger; Leg51; Leg52; North Atlantic/CONT RISE; Sample code/label
    Materialart: Dataset
    Format: text/tab-separated-values, 20 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Hoernle, Kaj; Tilton, George; Schmincke, Hans-Ulrich (1991): Sr-Nd-Pb isotopic evolution of Gran Canaria: evidence for shallow enriched mantle beneath the Canary Islands. Earth and Planetary Science Letters, 106(1-4), 44-63, https://doi.org/10.1016/0012-821X(91)90062-M
    Publikationsdatum: 2023-06-27
    Beschreibung: We report the Sr, Nd and Pb isotopic compositions (1) of 66 lava flows and dikes spanning the circa 15 Myr subaerial volcanic history of Gran Canaria and (2) of five Miocene through Cretaceous sediment samples from DSDP site 397, located 100 km south of Gran Canaria. The isotope ratios of the Gran Canaria samples vary for 87Sr/86Sr: 0.70302-0.70346, for 143Nd/144Nd: 0.51275-0.51298, and for 206Pb/204Pb: 18.76-20.01. The Miocene and the Pliocene-Recent volcanics form distinct trends on isotope correlation diagrams. The most SiO2-undersaturated volcanics from each group have the least radiogenic Sr and most radiogenic Pb, whereas evolved volcanics from each group have the most radiogenic Sr and least radiogenic Pb. In the Pliocene-Recent group, the most undersaturated basalts also have the most radiogenic Nd, and the evolved volcanics have the least radiogenic Nd. The most SiO2-saturated basalts have intermediate compositions within each age group. Although the two age groups have overlapping Sr and Nd isotope ratios, the Pliocene-Recent volcanics have less radiogenic Pb than the Miocene volcanics. At least four components are required to explain the isotope systematics of Gran Canaria by mixing. There is no evidence for crustal contamination in any of the volcanics. The most undersaturated Miocene volcanics fall within the field for the two youngest and westernmost Canary Islands in all isotope correlation diagrams and thus appear to have the most plume-like (high 238U/204Pb) HIMU-like composition. During the Pliocene-Recent epochs, the plume was located to the west of Gran Canaria. The isotopic composition of the most undersaturated Pliocene-Recent volcanics may reflect entrainment of asthenospheric material (with a depleted mantle (DM)-like composition), as plume material was transported through the upper asthenosphere to the base of the lithosphere beneath Gran Canaria. The shift in isotopic composition with increasing SiO2-saturation in the basalts and degree of differentiation for all volcanics is interpreted to reflect assimilation of enriched mantle (EM1 and EM2) in the lithosphere beneath Gran Canaria. This enriched mantle may have been derived from the continental lithospheric mantle beneath the West African Craton by thermal erosion or delamination during rifting of Pangaea. This study suggests that the enriched mantle components (EM1 and EM2) may be stored in the shallow mantle, whereas the HIMU component may have a deeper origin.
    Schlagwort(e): 47-397; Deep Sea Drilling Project; DRILL; Drilling/drill rig; DSDP; DSDP/ODP/IODP sample designation; Glomar Challenger; Isotope dilution; Lead; Lead-206/Lead-204 ratio; Lead-207/Lead-204 ratio; Lead-208/Lead-204 ratio; Leg47; Neodymium; Neodymium-143/Neodymium-144 ratio; Neodymium-143/Neodymium-144 ratio, error; North Atlantic/CONT RISE; Rubidium; Samarium; Sample code/label; Sample comment; Strontium; Strontium-87/Strontium-86 ratio; Strontium-87/Strontium-86 ratio, error; Thorium; Uranium; ε-Neodymium
    Materialart: Dataset
    Format: text/tab-separated-values, 85 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2023-06-27
    Schlagwort(e): 65-482B; 65-482C; 65-482D; 65-482F; 65-483; 65-483B; 65-483C; 65-485A; Aluminium oxide; Calcium oxide; Deep Sea Drilling Project; DEPTH, sediment/rock; DRILL; Drilling/drill rig; DSDP; DSDP/ODP/IODP sample designation; Elevation of event; Event label; Glomar Challenger; Iron oxide, FeO; Latitude of event; Leg65; Longitude of event; Magnesium oxide; Manganese oxide; North Pacific/Gulf of California/CONT RISE; North Pacific/Gulf of California/SEDIMENT POND; Phosphorus pentoxide; Potassium oxide; Sample code/label; Silicon dioxide; Sodium oxide; Titanium dioxide; X-ray fluorescence (XRF)
    Materialart: Dataset
    Format: text/tab-separated-values, 2046 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2023-06-27
    Schlagwort(e): 65-482B; 65-482C; 65-482D; 65-482F; 65-483; 65-483B; 65-483C; 65-485A; Chromium; Copper; Deep Sea Drilling Project; DEPTH, sediment/rock; DRILL; Drilling/drill rig; DSDP; DSDP/ODP/IODP sample designation; Elevation of event; Event label; Glomar Challenger; Latitude of event; Leg65; Longitude of event; Nickel; Niobium; North Pacific/Gulf of California/CONT RISE; North Pacific/Gulf of California/SEDIMENT POND; Rubidium; Sample code/label; Strontium; Yttrium; Zinc; Zirconium
    Materialart: Dataset
    Format: text/tab-separated-values, 1843 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...