GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    facet.materialart.
    Unbekannt
    NATURE PUBLISHING GROUP
    In:  EPIC3Isme Journal, NATURE PUBLISHING GROUP, 5(3), pp. 436-445, ISSN: 1751-7362
    Publikationsdatum: 2015-06-25
    Beschreibung: Aggregation of algae, mainly diatoms, is an important process in marine systems leading to the settling of particulate organic carbon predominantly in the form of marine snow. Exudation products of phytoplankton form transparent exopolymer particles (TEP), which acts as the glue for particle aggregation. Heterotrophic bacteria interacting with phytoplankton may influence TEP formation and phytoplankton aggregation. This bacterial impact has not been explored in detail. We hypothesized that bacteria attaching to Thalassiosira weissflogii might interact in a yet-to-be determined manner, which could impact TEP formation and aggregate abundance. The role of individual T. weissflogii-attaching and free-living new bacterial isolates for TEP production and diatom aggregation was investigated in vitro. T. weissflogii did not aggregate in axenic culture, and striking differences in aggregation dynamics and TEP abundance were observed when diatom cultures were inoculated with either diatom-attaching or free-living bacteria. The data indicated that free-living bacteria might not influence aggregation whereas bacteria attaching to diatom cells may increase aggregate formation. Interestingly, photosynthetically inactivated T. weissflogii cells did not aggregate regardless of the presence of bacteria. Comparison of aggregate formation, TEP production, aggregate sinking velocity and solid hydrated density revealed remarkable differences. Both, photosynthetically active T. weissflogii and specific diatom-attaching bacteria were required for aggregation. It was concluded that interactions between heterotrophic bacteria and diatoms increased aggregate formation and particle sinking and thus may enhance the efficiency of the biological pump.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , peerRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-05-27
    Beschreibung: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Farrington, J. W., Overton, E. B., & Passow, U. Biogeochemical processes affecting the fate of discharged Deepwater Horizon gas and oil new insights and remaining gaps in our understanding. Oceanography, 34(1), (2021): 76–97, https://doi.org/10.5670/oceanog.2021.118.
    Beschreibung: Research funded under the Gulf of Mexico Research Initiative provided new insights into the biogeochemical processes influencing the fate of petroleum chemicals entering the Gulf of Mexico from the Deepwater Horizon (DWH) accident. This overview of that work is based on detailed recent reviews of aspects of the biogeochemistry as well as on activities supported by the US Natural Resource Damage Assessment. The main topics presented here are distribution of hydrocarbons in the water column; the role of photo-oxidation of petroleum compounds at the air-sea interface; the role of particulates in the fate of the DWH hydrocarbons, especially marine oil snow (MOS) and marine oil snow sedimentation and flocculent accumulation (MOSSFA); oil deposition and accumulation in sediments; and fate of oil on beaches and in marshes. A brief discussion of bioaccumulation is also included. Microbial degradation is addressed in a separate paper in this special issue of Oceanography. Important future research recommendations include: conduct a more robust assessment of the mass balance of various chemical groupings and even individual chemicals during specific time intervals; seek a better understanding of the roles of photo-oxidation products, MOS, and MOSSFA and their relationships to microbial degradation; and determine the fates of the insoluble highly degraded and viscous oil residues in the environment.
    Beschreibung: We acknowledge the efforts of several hundred researchers within the Gulf of Mexico Research Initiative, the BP- and US government-funded DWH Natural Resource Damage Assessment efforts, the US National Science Foundation Rapid Response Program, NOAA Sea Grant, and several other sources of funding too numerous to mention that contributed to advancing knowledge of the fates of gas and oil inputs from the DWH accident. Adrian Burd, Joel Koska, Elizabeth Kujawinski, Samantha Joye, Antonietta Quigg, and Collin Ward co-led GoMRI synthesis workshops and/or were lead authors of recent papers reviewing key aspects of biogeochemical fates of DWH inputs.
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...