GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-06-18
    Description: High primary productivity in the equatorial Atlantic and Pacific oceans is one of the key features of tropical ocean biogeochemistry and fuels a substantial flux of particulate matter towards the abyssal ocean. How biological processes and equatorial current dynamics shape the particle size distribution and flux, however, is poorly understood. Here we use high-resolution size-resolved particle imaging and Acoustic Doppler Current Profiler data to assess these influences in equatorial oceans. We find an increase in particle abundance and flux at depths of 300 to 600 m at the Atlantic and Pacific equator, a depth range to which zooplankton and nekton migrate vertically in a daily cycle. We attribute this particle maximum to faecal pellet production by these organisms. At depths of 1,000 to 4,000 m, we find that the particulate organic carbon flux is up to three times greater in the equatorial belt (1° S–1° N) than in off-equatorial regions. At 3,000 m, the flux is dominated by small particles less than 0.53 mm in diameter. The dominance of small particles seems to be caused by enhanced active and passive particle export in this region, as well as by the focusing of particles by deep eastward jets found at 2° N and 2° S. We thus suggest that zooplankton movements and ocean currents modulate the transfer of particulate carbon from the surface to the deep ocean.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: video
    Format: video
    Format: video
    Format: video
    Format: video
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-11-08
    Description: The direct response of the tropical mixed layer to near-inertial waves (NIWs) has only rarely been observed. Here, we present upper-ocean turbulence data that provide evidence for a strongly elevated vertical diffusive heat flux across the base of the mixed layer in the presence of a NIW, thereby cooling the mixed layer at a rate of 244 W m−2 over the 20 h of continuous measurements. We investigate the seasonal cycle of strong NIW events and find that despite their local intermittent nature, they occur preferentially during boreal summer, presumably associated with the passage of atmospheric African Easterly Waves. We illustrate the impact of these rare but intense NIW induced mixing events on the mixed layer heat balance, highlight their contribution to the seasonal evolution of sea surface temperature, and discuss their potential impact on biological productivity in the tropical North Atlantic.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: Since the inception of the international South Atlantic Meridional Overturning Circulation initiative in the 21st century, substantial advances have been made in observing and understanding the Southern Hemisphere component of the Atlantic Meridional Overturning Circulation (AMOC). Here we synthesize insights gained into overturning flows, interocean exchanges, and water mass distributions and pathways in the South Atlantic. The overturning circulation in the South Atlantic uniquely carries heat equatorward and exports freshwater poleward and consists of two strong overturning cells. Density and pressure gradients, winds, eddies, boundary currents, and interocean exchanges create an energetic circulation in the subtropical and tropical South Atlantic Ocean. The relative importance of these drivers varies with the observed latitude and time scale. AMOC, interocean exchanges, and climate changes drive ocean warming at all depths, upper ocean salinification, and freshening in the deep and abyssal ocean in the South Atlantic. Long-term sustained observations are critical to detect and understand these changes and their impacts.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: The South Atlantic Meridional Overturning Circulation initiative began as a grassroots effort to study the South Atlantic Ocean and its impact on climate. In striving towards this goal, it has also become a platform for the empowerment of women and international scientists.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...