GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Milton :Taylor & Francis Group,
    Keywords: Satellite geodesy-Technique. ; Electronic books.
    Description / Table of Contents: Satellite remote sensing, in particular by radar altimetry, is a crucial technique for observations of the ocean surface and of many aspects of land surfaces, and of paramount importance for climate and environmental studies. It provides a state-of-the-art overview of the satellite altimetry techniques and related missions.
    Type of Medium: Online Resource
    Pages: 1 online resource (645 pages)
    Edition: 1st ed.
    ISBN: 9781498743464
    Series Statement: Earth Observation of Global Changes Series
    DDC: 551.48
    Language: English
    Note: Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Editors -- Contributors -- Chapter 1: Satellite Radar AltimetryPrinciple, Accuracy, and Precision -- 1.1 Introduction -- 1.1.1 Satellite Altimetry Measurement Principle -- 1.1.2 Satellite Radar Altimetry Historical Perspective -- 1.1.2.1 Satellite Altimetry Missions -- 1.1.2.2 Geographical Perspective and International Cooperation -- 1.1.2.3 Altimetry Products: History of Continuous Progress -- 1.1.3 Altimetry System Requirements -- 1.2 Radar Instrument -- 1.2.1 Radar Altimeter Instrument Principles -- 1.2.2 Observation Geometry -- 1.2.3 Radar Operation -- 1.2.4 Transmitted Waveform -- 1.2.5 Instrument Architecture -- 1.2.6 Instrument Example: Poseidon-3 of Jason-2 Mission -- 1.2.6.1 Poseidon-3 Architecture -- 1.2.6.2 Poseidon-3 Main Characteristics -- 1.2.7 Key Instrument Performance -- 1.2.8 Echo Formation -- 1.3 Echo characterization and processing -- 1.3.1 Speckle Noise -- 1.3.2 Analytical and Numerical Models -- 1.3.3 Estimation Strategies -- 1.3.4 New Altimeters -- 1.3.5 Non-Ocean Surfaces -- 1.4 Precise Orbit Determination -- 1.4.1 Orbit Determination Technique -- 1.4.1.1 Performance Requirements -- 1.4.1.2 Radial Error Properties -- 1.4.2 Orbit Determination Measurement Systems -- 1.4.3 Satellite Trajectory Modeling and Parameterization -- 1.4.4 Major Modeling Evolution since the Beginning of the 1990s -- 1.4.5 Long-Term Orbit Error and Stability Budget -- 1.4.6 Foreseen Modeling Improvement -- 1.5 Geophysical Corrections -- 1.5.1 Sea State Bias Correction -- 1.5.1.1 Origins of the Sea State Effects and Correction -- 1.5.1.2 Theoretical Solutions -- 1.5.1.3 Empirical Solutions. , 1.5.2 Atmospheric Propagation Effect Corrections -- 1.5.2.1 Ionospheric Correction -- 1.5.2.2 Dry Tropospheric Correction -- 1.5.2.3 The Wet Tropospheric Correction -- 1.6 Altimetry Product Auxiliary Information: Reference Surfaces, Tides, and High-Frequency Signal -- 1.6.1 Reference Surfaces -- 1.6.2 Tides, High-Frequency Signals -- 1.6.2.1 The Tide Correction -- 1.6.2.2 The High-Frequency Correction -- 1.6.2.3 S1 and S2 Atmospheric and Ocean Signals -- 1.7 Altimetry Time and Space Sampling: Orbit Selection and Virtual Constellation Approach -- 1.7.1 Sampling Properties of a Single Altimeter Orbit -- 1.7.2 Orbit Sub-Cycles and Sampling Properties -- 1.7.3 Altimeter Virtual Constellation and Phasing -- 1.8 Altimetry error budget -- 1.8.1 Error Budget for Mesoscale Oceanography -- 1.8.2 Error Budget for Mean Sea Level Trend Monitoring -- 1.8.3 Error Budget for Sub-Mesoscale -- References -- Chapter 2: Wide-Swath AltimetryA Review -- 2.1 Introduction -- 2.2 Ocean and Hydrology Sampling Requirements -- 2.3 Approaches to Wide-Swath Altimetry -- 2.3.1 From Nadir Altimetry to Wide-Swath Altimetry: Three-Dimensional Geolocation -- 2.3.2 Wide-Swath Altimetry Using Waveform Tracking -- 2.3.3 Wide-Swath Altimetry Using Radar Interferometry -- 2.4 The Interferometric Error Budget -- 2.4.1 Roll Errors -- 2.4.2 Phase Errors -- 2.4.3 Range Errors -- 2.4.4 Baseline Errors -- 2.4.5 Finite Azimuth Footprint Biases -- 2.4.6 Radial Velocity Errors -- 2.4.7 Calibration Methods -- 2.5 Wide-Swath Altimetry Phenomenology -- 2.5.1 Water Brightness -- 2.5.2 Wave Effects -- 2.5.2.1 The "Surfboard Effect" -- 2.5.2.2 Temporal Correlation Effects -- 2.5.2.3 Wave Bunching -- 2.5.2.4 The EM Bias. , 2.5.3 Layover and Vegetation Effects -- 2.6 Wide-Swath Altimetry Mission Design -- 2.7 Summary and Prospects -- References -- Acknowledgments -- Chapter 3: In Situ Observations Needed to Complement, Validate, and Interpret Satellite Altimetry -- 3.1 Introduction -- 3.2 Sea Surface Heights Obtained from Tide Gauge/GNSS Networks -- 3.2.1 Sea Level Measurements before the Altimeter Era -- 3.2.2 Tide Gauge and Altimeter Data Complementarity -- 3.2.3 Tide Gauges Used for Altimeter Calibration -- 3.2.4 Tide Gauge and Altimeter Data in Combination in Studies of Long-Term Sea Level Change -- 3.2.5 GNSS Equipment at Tide Gauges -- 3.2.6 New Developments in Tide Gauges and Data Availability -- 3.2.7 Tide Gauges and Altimetry in the Future -- 3.3 Upper-Ocean (0 to 2000 decibars) Steric Variability: The XBT and Argo Networks -- 3.3.1 The Relationship of SSH Variability with Subsurface T and S-Steric Height -- 3.3.2 A Brief History of Systematic Ocean Sampling by the XBT and Argo Networks -- 3.3.3 Ocean Heat Content and Steric Sea Level -- 3.3.4 The Global Pattern of SSH and Upper-Ocean Steric Height -- 3.3.5 Geostrophic Ocean Circulation -- 3.3.6 Horizontal Scales of Variability in the Ocean: The Challenge of Resolution -- 3.4 Deep-Ocean (greater than 2000 m) Steric Variability: Repeat Hydrography and Deep Argo -- 3.4.1 Ventilating the Deep Ocean: Deep Water Production and the Global MOC -- 3.4.2 Monitoring Deep Steric Variability through Repeat Hydrography -- 3.4.3 The Deep Ocean Contribution to Steric Sea Level -- 3.4.4 Future of Deep Observing: Deep Argo -- 3.6 Dynamic Topography and Surface Velocity -- 3.6.1 Eulerian Velocity Measurements -- 3.6.2 Lagrangian Velocity Measurements -- 3.6.3 Geostrophic Currents and Mean Dynamic Topography. , 3.6.4 Ageostrophic Motions -- 3.7 The Technology Revolution and the Future of Ocean Observations -- References -- Acknowledgments -- Chapter 4: Auxiliary Space-Based Systems for Interpreting Satellite Altimetry -- 4.1 Introduction -- 4.2 Measurements: Mean Geoid and Sea Surface -- 4.2.1 Parameterizing Gravity and the Geoid -- 4.2.2 GRACE and GOCE -- 4.2.3 Surface Gravity Data and Combination Geoids -- 4.2.4 Mean Sea Surface Models -- 4.3 Measurements: Time-Variable Gravity -- 4.4 Applications: Dynamic Ocean Topography -- 4.4.1 Importance of Consistency between Geoid and MSS -- 4.4.2 Improvements in MDT with GRACE and GOCE Geoids -- 4.4.3 Toward a Higher Spatial Resolution MDT -- 4.5 Applications: Global and Regional Ocean Mass Variations -- 4.6 Conclusions and Future Prospects -- References -- Chapter 5: A 25-Year Satellite Altimetry-Based Global Mean Sea Level Record -- 5.1 Introduction -- 5.2 The Altimeter Mean Sea Level Record -- 5.2.1 Computing Global and Regional Mean Sea Level Time Series -- 5.2.2 Altimeter Missions -- 5.2.3 Altimeter Corrections -- 5.2.4 Intermission Biases -- 5.2.5 Averaging Process -- 5.2.6 Validation of the GMSL Record with Tide Gauge Measurements -- 5.2.7 Mean Sea Level Variation and Uncertainties -- 5.2.7.1 Global Scale Uncertainty -- 5.2.7.2 Regional Scales -- 5.3 Interpreting the Altimeter GMSL Record -- 5.3.1 Steric Sea Level Contribution -- 5.3.2 The Cryosphere Contributions to GMSL -- 5.3.3 The Land Water Storage Contributions to GMSL -- 5.3.3.1 Interannual Variations -- 5.3.3.2 Long-Term Variations -- 5.4 Closing the Sea Level Budget and Uncertainties -- 5.4.1 Glacial Isostatic Adjustment -- 5.4.2 Ocean Mass/Barystatic Sea Level from GRACE. , 5.4.3 Closure and Missing Components -- 5.5 How Altimetry Informs Us About the Future -- References -- Chapter 6: Monitoring and Interpreting Mid-Latitude Oceans by Satellite Altimetry -- 6.1 Introduction: Role of Mid-Latitude Oceans -- 6.2 Western Boundary Currents -- 6.3 Meridional Circulation and Interbasin Exchanges -- 6.4 Climate Change -- 6.5 Summary and Future Research -- References -- Acknowledgments -- Chapter 7: Monitoring and Interpreting the Tropical Oceans by Satellite Altimetry -- 7.1 Introduction -- 7.2 Tropical Atlantic Ocean -- 7.2.1 Intraseasonal and Eddy Activities -- 7.2.1.1 Eddy Structures -- 7.2.1.2 Tropical Instability Waves -- 7.2.2 The Seasonal Cycle -- 7.2.3 Equatorial Waves -- 7.2.4 Interannual Variability -- 7.3 Tropical Indo-Pacific Ocean -- 7.3.1 Tropical Pacific -- 7.3.1.1 Intraseasonal Variability -- 7.3.1.2 Seasonal Variability -- 7.3.1.3 Interannual and Decadal Variability -- 7.3.2 Tropical Indian Ocean -- 7.3.2.1 Intraseasonal Variability -- 7.3.2.2 Seasonal Cycle -- 7.3.2.3 Interannual Variability -- 7.3.2.4 Decadal and Multidecadal Changes -- 7.3.3 Indo-Pacific Linkage and Indonesian Throughflow -- 7.4 Summary -- References -- Acknowledgments -- Chapter 8: The High Latitude Seas and Arctic Ocean -- 8.1 Introduction -- 8.1.1 Satellite Altimetry in the High Latitude and Arctic Ocean -- 8.2 Mapping the Sea Ice Thickness in the Arctic Ocean -- 8.3 Sea Level Change -- 8.3.1 The Seasonal Cycle -- 8.3.2 Secular and Long-Term Sea Level Changes -- 8.3.3 Arctic Sea Level Budget -- 8.3.4 The Polar Gap and Accuracy Estimates -- 8.4 Mean Dynamic Topography -- 8.5 Ocean Circulation and Volume Transport -- 8.5.1 Surface Circulation -- 8.5.2 Volume Transport. , 8.6 Summary and Outlook.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...