GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-16
    Description: We compared six biogeographically and climatically distinct population of extremely long-lived ocean quahog Arctica islandica, for age-dependent differences in metabolic rates and antioxidant capacities (superoxide dismutase, catalase activity and total glutathione concentration). Different geographic locations, covering a temperature and salinity gradient of 3.7–9.3 °C and 20–35 ppt from the Norwegian coast, White Sea, Iceland, Kattegat, Kiel Bay and German Bight. The bivalve shells were used as age recorders by counting annual growth bands. Maximum lifespan in different populations varied between 30 and 192 y. The exceptionally long lifespan of A. islandica cannot be exclusively explained by a better-established antioxidant defense system. Extreme longevity observed in some North Atlantic populations seems to be grounded in its very low lifetime mass specific respiration, in combination with stable maintenance of antioxidant protection over life in mature specimens. The shorter-lived populations have the highest metabolic rates and show no metabolic response (Q10) when warmed to higher temperature. Low and fluctuating salinity in Baltic exerts a stress, which enhances respiration rates and shortens longevity.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    INTER-RESEARCH
    In:  EPIC3Marine Ecology-Progress Series, INTER-RESEARCH, 628, pp. 17-36, ISSN: 0171-8630
    Publication Date: 2019-11-28
    Description: We examined whether taxonomically distinct benthic communities from contrasting sediments in the German Bight (southern North Sea) also differ in their trophic structure. As a case study, we compared the Amphiura filiformis community (AFC) of silty sands and the Bathyporeia-Tellina community (BTC) of fine sands using a combination of stable isotope analysis and data on trophic interactions. Differences between the food webs were evident in the feeding guild composition of important primary consumers: deposit and interface feeders are the most diverse primary consumer guilds in the AFC, whereas suspension and interface feeders play a major role in the BTC, reflecting differences in physical properties and food availability at the sediment-water interface. While all primary consumer guilds had the same trophic level (TL) in the AFC, deposit feeders of the BTC occupied a trophic position intermediate between other primary and higher-order consumer guilds, likely explained by partially incomplete knowledge of their trophic ecology and selective feeding, including the ingestion of meiofauna. Most food web properties, however, were similar between the AFC and BTC: they mainly depend on pelagic primary production, reach TL 4 and are characterized by a prevalence of generalist higher-order consumers. Furthermore, both trophic networks had similar linkage densities and high directed connectance, the latter feature suggesting considerable food web robustness. Our findings suggest that although communities in the German Bight differ in some aspects of their trophic structure, they share a similar food web topology, indicating a comparable degree of resilience towards natural and anthropogenic disturbances.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...