GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part II: Topical Studies in Oceanography, 46 . pp. 33-54.
    Publication Date: 2019-09-23
    Description: The possibilities of defining and computing an approximately neutral density variable are reexamined in this paper. There are three desirable properties that a neutral density variable should possess. Firstly, the isosurfaces of this variable should coincide with (approximately) neutral surfaces. This would facilitate the analysis of hydrographic data on the most appropriate mixing and spreading surfaces. Secondly, the horizontal gradients of the neutral density should agree with the gradients of the in situ density, and thirdly the vertical gradient of the neutral density variable should be proportional to the static stability of the water column. A density variable that approximates the latter two properties can be used in ocean circulation models based on layer coordinates, and would reduce substantial errors in present isopycnal models due to the use of a potential density variable. No variable can possess all the three properties simultaneously. The variable γn introduced by Jackett and McDougall (1997, J. Phys. Oceanogr. 27, 237–263) satisfies the first of the properties exactly but is not designed for the use in models. Based on climatological data in the North Atlantic, an alternative neutral density variable ν̃(S, Θ) is defined, which is shown to approximate the two gradient criteria much better than any potential density. We suggest that this neutral density variable may be useful in isopycnal ocean models as an alternative to potential density, since it could significantly reduce errors in thermal wind relation and vertical stability
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-10-07
    Description: A systematic intercomparison of three realistic eddy-permitting models of the North Atlantic circulation has been performed. The models use different concepts for the discretization of the vertical coordinate, namely geopotential levels, isopycnal layers, terrain-following (sigma) coordinates, respectively. Although these models were integrated under nearly identical conditions, the resulting large-scale model circulations show substantial differences. The results demonstrate that the large-scale thermohaline circulation is very sensitive to the model representation of certain localised processes, in particular to the amount and water mass properties of the overflow across the Greenland–Scotland region, to the amount of mixing within a few hundred kilometers south of the sills, and to several other processes at small or sub-grid scales. The different behaviour of the three models can to a large extent be explained as a consequence of the different model representation of these processes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-23
    Description: This paper shows that the mean flow of an eddy-permitting model can be altered by assimilation of surface height variability, providing that information about the mean sea surface is included, using an adaption of a statistical–dynamical method devised by Oschlies and Willebrand. We show that for a restricted depth range (about 1000 m), dynamical knowledge can make up for the null space present in surface data whose temporal extent may be too short to distinguish between vertical modes. The lack of an accurate geoid has meant that most assimilation methods, while representing variability well, have been unable to modify the mean flow to any extent. However, we show that by including several approximate forms for the mean sea surface, the mean interior flow in the upper kilometer can be rapidly adjusted towards reality by the assimilation, with the location of major current systems moved by hundreds of kilometers.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...