GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part II: Topical Studies in Oceanography, 42 (1). pp. 99-109.
    Publication Date: 2016-08-02
    Description: The role of TEP (Transparent Exopolymer Particles) in the flocculation of a diatom bloom was studied under controlled conditions in a mesocosm. The concentration of TEP increased exponentially during growth, flocculation and senescence of the bloom. Aggregation began dominating the particle dynamics of TEP during the early growth phase of the bloom, several days prior to the appearance of large flocs and nutrient depletion. TEP aggregated with themselves and with phytoplankton due to the high stickiness of TEP, but phytoplankton was not observed to aggregrate with itself. The production of TEP, estimated from changes in concentration, did not increase after nutrients were depleted. The concentration of TEP was a linear function of chl a and particulate organic carbon (POC), indicating that production of TEP was linked to growth rather than standing stocks of phytoplankton. The ratio between TEP and phytoplankton appeared to be one of the factors determining the onset of the flocculation of the bloom. The concentration of TEP may have been decreased by bacterial degradation. Bacterial degradation of TEP may explain the low TEP to chl a values, the decrease in stickiness of particles as the bloom progressed, and the retarded onset of flocculation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Elsevier
    In:  FEMS Microbiology Ecology, 46 (3). pp. 247-255.
    Publication Date: 2020-03-20
    Description: Observations that the majority of silica dissolution occurs within the upper 200 m of the ocean, and that sedimentation rates of diatom frustules generally do not decrease significantly with depth, suggested reduced dissolution rates of diatoms embedded within sinking aggregates. To investigate this hypothesis, silica dissolution rates of aggregated diatom cells were compared to those of dispersed cells during conditions mimicking sedimentation below the euphotic zone. Changes in the concentrations of biogenic silica, silicic acid, cell numbers, chlorophyll a and transparent exopolymer particles (TEP) were monitored within aggregates and in the surrounding seawater (SSW) during two 42-day experiments. Whereas the concentration of dispersed diatoms decreased over the course of the experiment, the amount of aggregated cells remained roughly constant after an initial increase. Initially only 6% of cells were aggregated and at the end of the experiment more than 60% of cells were enclosed within aggregates. These data imply lower dissolution rates for aggregated cells. However, fluxes of silica between the different pools could not be constrained reliably enough to unequivocally prove reduced dissolution for aggregated cells.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...