GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2020-02-06
    Beschreibung: This study applies three classification methods exploiting the angular dependence of acoustic seafloor backscatter along with high resolution sub-bottom profiling for seafloor sediment characterization in the Eckernförde Bay, Baltic Sea Germany. This area is well suited for acoustic backscatter studies due to its shallowness, its smooth bathymetry and the presence of a wide range of sediment types. Backscatter data were acquired using a Seabeam1180 (180 kHz) multibeam echosounder and sub-bottom profiler data were recorded using a SES-2000 parametric sonar transmitting 6 and 12 kHz. The high density of seafloor soundings allowed extracting backscatter layers for five beam angles over a large part of the surveyed area. A Bayesian probability method was employed for sediment classification based on the backscatter variability at a single incidence angle, whereas Maximum Likelihood Classification (MLC) and Principal Components Analysis (PCA) were applied to the multi-angle layers. The Bayesian approach was used for identifying the optimum number of acoustic classes because cluster validation is carried out prior to class assignment and class outputs are ordinal categorical values. The method is based on the principle that backscatter values from a single incidence angle express a normal distribution for a particular sediment type. The resulting Bayesian classes were well correlated to median grain sizes and the percentage of coarse material. The MLC method uses angular response information from five layers of training areas extracted from the Bayesian classification map. The subsequent PCA analysis is based on the transformation of these five layers into two principal components that comprise most of the data variability. These principal components were clustered in five classes after running an external cluster validation test. In general both methods MLC and PCA, separated the various sediment types effectively, showing good agreement (kappa 〉0.7) with the Bayesian approach which also correlates well with ground truth data (r2 〉 0.7). In addition, sub-bottom data were used in conjunction with the Bayesian classification results to characterize acoustic classes with respect to their geological and stratigraphic interpretation. The joined interpretation of seafloor and sub-seafloor data sets proved to be an efficient approach for a better understanding of seafloor backscatter patchiness and to discriminate acoustically similar classes in different geological/bathymetric settings.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    Springer
    In:  Journal of Ocean University of China, 17 (3). pp. 555-562.
    Publikationsdatum: 2021-02-08
    Beschreibung: Seafloor elongated depressions are indicators of gas seepage or slope instability. Here we report a sequence of slope-parallel elongated depressions that link to headwalls of sediment slides on upper slope. The depressions of about 250 m in width and several kilometers in length are areas of focused gas discharge indicated by bubble-release into the water column and methane enriched pore waters. Sparker seismic profiles running perpendicular and parallel to the coast, show gas migration pathways and trapped gas underneath these depressions with bright spots and seismic blanking. The data indicate that upward gas migration is the initial reason for fracturing sedimentary layers. In the top sediment where two young stages of landslides can be detected, the slope-parallel sediment weakening lengthens and deepens the surficial fractures, creating the elongated depressions in the seafloor supported by sediment erosion due to slope-parallel water currents.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2013-06-10
    Beschreibung: In 1948, Le Danois reported for the first time the occurrence of living cold-water coral reefs, the so-called “massifs coralliens”, along the European Atlantic continental margin. In 2008, a cruise with R/V Belgica was set out to re-investigate these cold-water corals in the Penmarc'h and Guilvinec Canyons along the Gascogne margin of the Bay of Biscay. During this cruise, an area of 560 km2 was studied using multibeam swath bathymetry, CTD casts, ROV observations and USBL-guided boxcoring. Based on the multibeam data and the ROV video imagery, two different cold-water coral reef settings were distinguished. In water depths ranging from 260 to 350 m, mini mounds up to 5 m high, covered by dead cold-water coral rubble, were observed. In between these mounds, soft sediment with a patchy distribution of gravel was recognised. The second setting (350–950 m) features hard substrates with cracks, spurs, cliffs and overhangs. In water depths of 700 to 950 m, both living and dead cold-water corals occur. Occasionally, they form dense coral patches with a diameter of about 10–60 m, characterised by mostly stacked dead coral rubble and a few living specimens. U/Th datings indicate a shift in cold-water coral growth after the Late Glacial Maximum (about 11.5 ka BP) from shallow to deep-water settings. The living cold-water corals from the deeper area occur in a water density (sigma–theta) of 27.35–27.55 kg m− 3, suggested to be a prerequisite for the growth and distribution of cold-water coral reefs along the northern Atlantic margin. In contrast, the dead cold-water coral fragments in the shallow area occur in a density range of 27.15–27.20 kg m− 3 which is slightly outside the density range where living cold-water corals normally occur. The presented data suggest that this prerequisite is also valid for coral growth in the deeper canyons (〉 350 m) in the Bay of Biscay.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2013-06-10
    Beschreibung: We evaluate different hypotheses concerning the formation of a peculiar, flat-topped ridge at Rock Garden, offshore of the North Island of New Zealand. The coincidence of the ridge bathymetry with the depth at which gas hydrate stability intersects the seafloor has been previously used to propose that processes at the top of gas hydrate stability may cause seafloor erosion, giving rise to the flat ridge morphology. Two mechanisms that lead to increased fluid pressure (and sediment weakening) have previously been proposed: (1) periodic formation (association) and dissociation of gas hydrates during seafloor temperature fluctuations; and (2) dissociation of gas hydrates at the base of gas hydrate stability during ridge uplift. We use numerical models to test these hypotheses, as well as to evaluate whether the ridge morphology can develop by tectonic deformation during subduction of a seamount, without any involvement from gas hydrates. We apply a commonly-used 1D approach to model gas hydrate formation and dissociation, and develop a 2D mechanical model to evaluate tectonic deformation. Our results indicate that: (1) Tectonics (subduction of a seamount) may cause a temporary flat ridge morphology to develop, but this evolves over time and is unlikely to provide the main explanation for the ridge morphology; (2) Where high methane flux overwhelms the anaerobic oxidation of methane via sulphate reduction near the seafloor, short-period temperature fluctuations (but on timescales of years, not months as proposed originally) in the bottom water can lead to periodic association and dissociation of a small percentage of gas hydrate in the top of the sediment column. However, the effect of this on sediment strength is likely to be small, as evidenced by the negligible change in computed effective pressure; (3) The most likely mechanism to cause sediment weakening, leading to seafloor erosion, results from the interaction of gas hydrate stability with tectonic uplift of the ridge, provided bulk permeability strongly decreases with increasing hydrate content. Rather than overpressure developing from dissociation of hydrates at the base of gas hydrate stability (as previously thought), we found that the weakening is caused by focusing of gas hydrate formation at shallow sediment levels. This creates large fluid pressures and can lead to negative effective pressures near the seafloor, reducing the sediment strength.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2020-05-14
    Beschreibung: The current topographic maps of the Rhone Delta—and of Lake Geneva in general—are mainly based on hydrographic data that were acquired during the time of F.-A. Forel at the end of the nineteenth century. In this paper we present results of a new bathymetric survey, based on single- and multi-beam echosounder data. The new data, presented as a digital terrain model, show a well-structured lake bottom morphology, reflecting depositional and erosional processes that shape the lake floor. As a major geomorphologic element, the sub-aquatic Rhone Delta extends from the coastal platform to the depositional fans of the central plain of the lake at 310 m depth. 9 canyons cut the platform edge of the delta. These are sinuous (“meandering”) channels formed by erosional and depositional processes, as indicated by the steep erosional canyon walls and the depositional levees on the canyon shoulders. Ripples or dune-like morphologies wrinkle the canyon bottoms and some slope areas. Subaquatic mass movements are apparently missing on the delta and are of minor importance on the lateral lake slopes. Morphologies of the underlying bedrock and small local river deltas are located along the lateral slopes of Lake Geneva. Based on historical maps, the recent history of the Rhone River connection to the sub-aquatic delta and the canyons is reconstructed. The transition from three to two river branches dates to 1830–1840, when the river branch to the Le Bouveret lake bay was cut. The transition from two to one river branch corresponds to the achievement of the correction and dam construction work on the modern Rhone River channel between 1870 and 1880.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2020-07-23
    Beschreibung: Methane concentrations and carbon stable isotopic ratios (δ13CCH4), oxygen concentrations and hydrographic parameters (CTD) were investigated in the water column of the north-western Black Sea during the summers of 2003 and 2004. Water samples were collected along a transect which crosses three methane seep areas in 90, 220, and 600 m water depth. These active seeps strongly influence methane distribution in the overlying anoxic and oxic water column. Methane concentration and stable isotope (δ13CCH4) patterns indicate that water column stratification and microbial methane oxidation efficiently hamper the transfer of methane to the sea surface. Only the shelf seep site in 90 m water depth acts as a direct source of atmospheric methane. Microbial methane oxidation and/or gas stripping seem to cause oxygen depletion above the two shallower seep areas. The methane flux from the 90 m site into the water column is estimated to have been 0.599 × 106 mol yr− 1 (9.6 t yr− 1) in 2003 and 0.347 × 106 mol yr− 1 (5.6 t yr− 1) in 2004. Comparison of results from the two years shows different water column methane inventories in the deep part of the transect, implying a variable methane source strength at the 600 m deep site. The flux from this area is estimated to have been 11.35 × 106 mol yr− 1 in 2003.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2019-12-03
    Beschreibung: The relation between acoustic sea-floor backscatter and seep distribution is examined by integrating multibeam backscatter data and seep locations detected by single-beam echosounder. This study is further supported by side-scan sonar recordings, high-resolution 5 kHz seismic data, pore-water analysis, grain-size analysis and visual sea-floor observations. The datasets were acquired during the 2003 and 2004 expeditions of the EC-funded CRIMEA project in the Dnepr paleo-delta area, northwestern Black Sea. More than 600 active methane seeps were hydroacoustically detected within a small (3.96 km by 3.72 km) area on the continental shelf of the Dnepr paleo-delta in water depths ranging from − 72 m to − 156 m. Multibeam and side-scan sonar recordings show backscatter patterns that are clearly associated with seepage or with a present dune area. Seeps generally occur within medium- to high-backscatter areas which often coincide with pockmarks. High-resolution seismic data reveals the presence of an undulating gas front, i.e. the top of the free gas in the subsurface, which domes up towards and intersects the sea floor at locations where gas seeps and medium- to high-backscatter values are detected. Pore-water analysis of 4 multi-cores, taken at different backscatter intensity sites, shows a clear correlation between backscatter intensity and dissolved methane fluxes. All analyzed chemical species indicate increasing anaerobic oxidation of methane (AOM) from medium- to high-backscatter locations. This is confirmed by visual sea-floor observations, showing bacterial mats and authigenic carbonates formed by AOM. Grain-size analysis of the 4 multi-cores only reveals negligible variations between the different backscatter sites. Integration of all datasets leads to the conclusion that the observed backscatter patterns are the result of ongoing methane seepage and the precipitation of methane-derived authigenic carbonates (MDACs) caused by AOM. The carbonate formation also appears to lead to a gradual (self)-sealing of the seeps by cementing fluid pathways/horizons followed by a relocation of the bubble-releasing locations.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2013-07-03
    Beschreibung: An ancient hydrocarbon seep province of 14 isolated, authigenic carbonate deposits has been identified in fine-grained, deep-marine siliciclastic strata of the Miocene East Coast Basin, North Island, New Zealand. These forearc sediments have been uplifted and complexly deformed into accretionary ridges, adjacent to the still-active Hikurangi convergent margin. Older active and passive margin strata (mid-Cretaceous to Oligocene in age) underlie the Neogene sequence, and contain oil- and gas-prone source rocks. Older Mesozoic meta-sedimentary rocks constitute the backstop against which the current phase of subduction-related sedimentation has accumulated (~ 24 Ma–present). The seep-carbonates (up to 10 m thick, 200 m across) archive methane signatures in their depleted carbon isotopes (to δ13C –51.7‰ PDB), and contain chemosynthesis-based paleocommunities (e.g. worm tubes, bathymodioline mussels, and vesicomyid, lucinid and thyasirid bivalves) typical of other Cenozoic and modern seeps. Northern and southern sites are geographically separated, and exhibit distinct lithological and faunal differences. Structural settings are variable. Seep-associated lithologies also are varied, and suggest carbonate development in sub-seafloor, seafloor and physically reworked (diapiric expansion, gas explosion, gravity slide or debris flow) settings, similar to Italian Apennine seep deposits of overlapping ages. Peculiar attributes of the New Zealand Miocene seep deposits are several, including digitate thrombolites of clotted microbial micrite encased in thick, isopachous horizons and botryoids of aragonite. Seep plumbing features are also well-exposed at some sites, displaying probable gas-explosion breccias filled with aragonite, tubular concretions (fluid conduits), and carbonate-cemented, thin sandstone beds and burrows within otherwise impermeable mudstones. A few seeps were large enough to develop talus-debris piles on their flanks, which were populated by lucinid bivalves and terebratulid brachiopods. Firmgrounds and hardgrounds were common, as evidenced by trace fossil associations or caryophyllid coral thickets atop some seep-carbonate deposits. Thus, the New Zealand examples show strong evidence of formation in sediments at or just beneath the seafloor, but some were clearly exhumed by erosion to sustain later non-seep, epifaunal and boring paleocommunities.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2013-06-28
    Beschreibung: Extensive ROV-based sampling and exploration of the seafloor was conducted along an eroded transform-parallel fault scarp on the northeastern side of the Guaymas Basin in the Gulf of California to observe the nature of fluids venting from the seafloor, measure the record left by methane-venting on the carbonates from this area, and determine the association with gas hydrate. One gas vent vigorous enough to generate a water-column gas plume traceable for over 800 m above the seafloor was found to emanate from a ∼10-cm-wide orifice on the eroded scarp face. Sediment temperature measurements and topography on a sub-bottom reflector recorded in a transform-parallel seismic reflection profile identified a subsurface thermal anomaly beneath the gas vent. Active chemosynthetic biological communities (CBCs) and extensive authigenic carbonates that coalesce into distinct chemoherm structures were encountered elsewhere along the eroded transform-parallel scarp. The carbon isotopic composition of methane bubbles flowing vigorously from the gas vent (−53.6±0.8‰ PDB) is comparable to methane found in sediment cores taken within the CBCs distributed along the scarp (−51.9±8.1‰ PDB). However, the δ13C value of the CO2 in the vent gas (+12.4±1.1‰ PDB) is very distinct from those for dissolved inorganic carbon (DIC) (−35.8‰ to −2.9‰ PDB) found elsewhere along the scarp, including underneath CBCs. The δ13C values of the carbonate-rich sediments and rocks exposed on the seafloor today also span an unusually large range (−40.9‰ to +12.9‰ PDB) and suggest two distinct populations of authigenic carbonate materials were sampled. Unconsolidated sediments and some carbonate rocks, which have lithologic evidence for near-seafloor formation, have negative δ13C values, while carbonate rocks that clearly formed in the subsurface have positive δ13C values (up to +23.0‰) close to that measured for CO2 in the vent gas. There appears to be two carbon sources for the authigenic carbonates: (1) deeply-sourced, isotopically heavy CO2 (∼+12‰); and (2) isotopically light DIC derived from local anaerobic oxidation of methane at the sulfate–methane interface in the shallow subsurface. Addition of isotopically light methane-derived carbon at the seafloor may completely mask the isotopically heavy CO2 signature (+12.4‰) in the underlying sediments. Thus, the authigenic carbonates may have formed from the same methane- and carbon dioxide-bearing fluid, but under different migration and alteration conditions, depending on how it migrated through the sediment column.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    facet.materialart.
    Unbekannt
    Springer
    In:  Geo-Marine Letters, 24 (2). pp. 75-85.
    Publikationsdatum: 2017-05-24
    Beschreibung: Hydroacoustic methods are particularly suitable for investigations of the occurrence, cyclicity and amount of bubbles released at cold seeps without disturbing them. Experiments with a horizontally looking single beam transducer (40 and 300 kHz) directed towards artificially produced bubbles show that the backscattering strength of the bubbles increases with the gas flux rate independently of the bubble radii distribution. It is demonstrated that an acoustic system can be calibrated in such a way that gas flux rates of bubble-size spectra, as observed at natural seeps, can be directly related to the echo level of a known, acoustically insonified volume. No system-specific parameters have to be known except the beam width.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...