GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-12-05
    Description: Water and sediment supply are essential to the health of deltaic ecosystems. Diverse datasets were integrated to better understand how climate change is shifting the supply of water and sediment to the largest polar distributary channel pattern – the Lena River Delta. Here the increase in warming rate from an average air temperature is from 4.1 °C for the period 1950–99 to 6.1 °C during 2000–21, which is higher than in the adjacent polar regions. Streamflow and sediment yield entering the Lena Delta have increased since 1988 by 56.3 km3 and 6.1×106 t, respectively; meanwhile, the Lena River’s increases in water temperature in June, July–August and September were found to be as much as 1.1, 0.6 and 0.05 °C. These changes have a pronounced effect on sediment regimes in particular parts of the delta. Based on analyses of correlations between various hydroclimatic drivers and sediment concentration changes across particular distributaries of the Lena Delta extracted from Landsat datasets, bank degradation driven by thermal erosional processes (which are in turn related to air and soil temperature increases) is proved to be the primary factor of the sediment regime in the delta. The study also highlights that sediment load changes are sensitive to wind speed due to remobilization of bottom sediment. Sums of daily air temperature and wind speed over 3 days are correlated with sediment concentration changes in the delta. The results also indicate that carbon transport across the delta (both POC and DOC) depends on sediment transport conditions and water discharge and might increase by up to 10 %. We conclude that the Lena Delta can be recognized as the global hot spot in terms of the hydrological consequences of climate change, which is altering sediment regimes, stream hydromorphology and carbon transport.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Frontiers Media SA
    In:  EPIC3Frontiers in Marine Science, Frontiers Media SA, 10, pp. 1082109-1082109, ISSN: 2296-7745
    Publication Date: 2023-03-24
    Description: In the past decades the Arctic has experienced stronger temperature increases than any other region globally. Shifts in hydrological regimes and accelerated permafrost thawing have been observed and are likely to increase mobilization of organic carbon and its transport through rivers into the Arctic Ocean. In order to better quantify changes to the carbon cycle, Arctic rivers such as the Lena River in Siberia need to be monitored closely. Since 2018, a sampling program provides frequent in situ observations of dissolved organic carbon (DOC) and colored dissolved organic matter (CDOM) of the Lena River. Here, we utilize this ground truth dataset and aim to test the potential of frequent satellite observations to spatially and temporally complement and expand these observations. We explored all available overpasses (~3250) of the Ocean and Land Colour Instrument (OLCI) on Sentinel-3 within the ice-free periods (May – October) for four years (2018 to 2021) to develop a new retrieval scheme to derive concentrations of DOC. OLCI observations with a spatial resolution of ~300 m were corrected for atmospheric effects using the Polymer algorithm. The results of this study show that using this new retrieval, remotely sensed DOC concentrations agree well with in situ DOC concentrations (MAPD=10.89%, RMSE=1.55 mg L−1, r²=0.92, n=489). The high revisit frequency and wide swath of OLCI allow it to capture the entire range of DOC concentrations and their seasonal variability. Estimated satellite-derived DOC export fluxes integrated over the ice-free periods of 2018 to 2021 show a high interannual variability and agree well with flux estimates from in situ data (RMSD=0.186 Tg C, MAPD=4.05%). In addition, 10-day OLCI composites covering the entire Lena River catchment revealed increasing DOC concentration and local sources of DOC along the Lena from south to north. We conclude that moderate resolution satellite imagers such as OLCI are very capable of observing DOC concentrations in large/wide rivers such as the Lena River despite the relatively coarse spatial resolution. The global coverage of remote sensing offers the expansion to more rivers in order to improve our understanding of the land-ocean carbon fluxes in a changing climate.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-04-22
    Description: The Arctic is greatly impacted by climate change. The increase in air temperature drives the thawing of permafrost and an increase in coastal erosion and river discharge. This leads to a greater input of sediment and organic matter into coastal waters, which substantially impacts the ecosystems by reducing light transmission through the water column and altering the biogeochemistry, but also the subsistence economy of local people, and changes in climate because of the transformation of organic matter into greenhouse gases. Yet, the quantification of suspended sediment in Arctic coastal and nearshore waters remains unsatisfactory due to the absence of dedicated algorithms to resolve the high loads occurring in the close vicinity of the shoreline. In this study we present the Arctic Nearshore Turbidity Algorithm (ANTA), the first reflectance-turbidity relationship specifically targeted towards Arctic nearshore waters that is tuned with in-situ measurements from the nearshore waters of Herschel Island Qikiqtaruk in the western Canadian Arctic. A semi-empirical model was calibrated for several relevant sensors in ocean color remote sensing, including MODIS, Sentinel 3 (OLCI), Landsat 8 (OLI), and Sentinel 2 (MSI), as well as the older Landsat sensors TM and ETM+. The ANTA performed better with Landsat 8 than with Sentinel 2 and Sentinel 3. The application of the ANTA to Sentinel 2 imagery that matches in-situ turbidity samples taken in Adventfjorden, Svalbard, shows transferability to nearshore areas beyond Herschel Island Qikiqtaruk.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Elsevier
    In:  EPIC3Agricultural and Forest Meteorology, Elsevier, 339, pp. 109543-109543, ISSN: 0168-1923
    Publication Date: 2024-04-22
    Description: Tundra is primarily a habitat for shrub growth, not trees, but growth of prostrate forms of trees has been reported occasionally from the subarctic tundra region. In the light of on-going climate change, climate sensitivity studies of these unique trees are essential to predict vegetation dynamics and potential northward expansion of boreal forest tree species into tundra. Here we studied one of the northernmost Larix Mill. trees and Betula nana L. shrubs (72°N) from the Siberian tundra for the common period 1980-2017. We took advantage of the discovery of a single cohort of prostrate Larix trees within a tundra ecosystem, i.e., ca. 60 km northwards from the northern treeline, and compared climate-growth relationships of the two species. Both woody plants were sensitive to the July temperature, however this relationship was stable across the entire study period (1980-2017) only for Betula nana chronology. Additionally, radial growth of Larix trees became negatively correlated to temperatures during the previous summer. In recent period moisture sensitivity between Larix trees and Betula nana shrubs was contrasting, with generally wetter soil conditions favoring Larix trees growth and dryer conditions promoting Betula nana growth. Our study indicates that Larix trees radial growth in recent years is more sensitive to moisture than to summer air temperatures, whereas temperature sensitivity of Betula nana shrub is stable over time. We provide first detailed insight into the annual resolution on Larix tree growth sensitivity to climate in the heart of the tundra. The potentially higher Betula nana shrub resistance to warmer and drier climate versus Larix trees on a tundra revealed in our study needs to be further examined across habitats of various soil, moisture and permafrost status.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...