GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-13
    Description: Highlights: • A joint analysis of deep current meter records in the western North Atlantic. • Intra-seasonal variability dominates the deep boundary current. • Topographic waves near 10d periods trapped over steep topography. • Basin centers are showing longer periods (50d) caused by the eddy field. • Observed variability characteristics compared to high resolution model simulation. Abstract The Deep Western Boundary Current (DWBC) along the western margin of the subpolar North Atlantic is an important component of the deep limb of the Meridional Overturning near its northern origins. A network of moored arrays from Denmark Strait to the tail of the Grand Banks has been installed for almost two decades to observe the boundary currents and transports of North Atlantic Deep Water as part of an internationally coordinated observatory for the Atlantic Meridional Overturning Circulation. The dominant variability in all of the moored velocity time series is in the week-to-month period range. While the temporal characteristics of this variability change only gradually between Denmark Strait and Flemish Cap, a broad band of longer term variability is present farther along the path of the DWBC at the Grand Banks and in the interior basins (Labrador and Irminger Seas). The vigorous intra-seasonal variability may well mask possible interannual to decadal variability that is typically an order of magnitude smaller than the high-frequency fluctuations. Here, the intra-seasonal variability is quantified at key positions along the DWBC path using both, observations and high resolution model data. The results are used to evaluate the model circulation, and in turn the model is used to relate the discrete measurements to the overall pattern of the subpolar circulation. Topographic waves are found to be trapped by the steep topography all around the western basins, the Labrador and Irminger Seas. In the Labrador Sea, the high intra-seasonal variability of the boundary current regime is separated by a region of extremely low variability in narrow recirculation cells from the basin interior. There, the variability is also on intra-seasonal timescales, but at much longer periods around 50 days.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Atmospheric and Oceanic Technology, 20 (5). pp. 742-751.
    Publication Date: 2020-08-04
    Description: A new shipboard current profiler, a 75-kHz ocean surveyor, was operationally used during two research cruises in the tropical Atlantic and the subpolar North Atlantic, respectively. Here, a report is presented on the first experience with this instrument in two very different current regimes, in the Tropics with large vertical shears, and in the subpolar regime with mainly barotropic flow. The ocean surveyor continuously measured currents in the upper ocean from near the surface to about 500–700-m depth. The measurement range showed a dependence on the regional and temporal variations of scattering particles and on the intensity of swell and wind waves. Statistical comparisons are performed with on-station lowered acoustic Doppler current profiler (LADCP) profiles and underway measurements by classic shipboard acoustic Doppler current profiler (ADCP) measurements. Accuracy estimates for hourly averaged ocean surveyor currents result in errors of about 1 cm s–1 for on-station data and of 2–4 cm s–1 for underway measurements, depending on the regional abundance of scatterers and on the weather conditions encountered.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part I: Oceanographic Research Papers, 42 (5). pp. 773-795.
    Publication Date: 2018-03-02
    Description: The flow field in the area of what was thought to be the source region of the North Brazil Current (NBC) off the northeast coast of Brazil between 5 degrees 30'S and 10 degrees S was investigated in austral spring during November 1992 and compared with observations in October 1990. The data were taken with several different instruments, including vessel-mounted ADCP, lowered-ADCP, Pegasus, CTD and XBTs. The flow was found off the coast at 5 degrees 30'S as well as at 10 degrees S as an undercurrent, the North Brazil Undercurrent (NBUC). The NBUC shows a subsurface core at about 200 m depth with velocities of up to 90.0 cm s(-1), resulting in large northward transports of more than 22 Sv in the upper 1000 m. The transport is about the same at 5 degrees 30'S and 10 degrees S, hence no net inflow from the east is required to feed the NBUC. The climatological Ekman transport is to the south between 5 degrees 30'S and 10 degrees S, and in consequence the northward flow near the surface was reduced and might be one reason for the existence of the undercurrent. The flow near the coast was to the north at 10 degrees S, therefore the Brazil Current had to start as a coastal current south of 10 degrees S. For the zonal sections at 5 degrees 30'S and 10 degrees S the geostrophic computations relative to the density surface sigma(1) = 32.15 kg m(-3) (about 1150 m depth) resulted in transports comparable to those obtained from direct measurements. The results further show that the choice of a correct level of no motion can be supported by the direct observations. A shallower reference based on water mass boundaries alone would reduce the NBUC transport to almost zero. Computations with data from the historical data base for austral fall resulted in a weaker NBUC of less than 20 Sv near 10 degrees S, indicating a possible seasonal signal in the NBUC with a stronger NBUC in austral spring.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Atmospheric and Oceanic Technology, 10 (5). pp. 764-773.
    Publication Date: 2020-08-04
    Description: Ocean deep velocity profiles were obtained by lowering a self-contained 153.6-kHz acoustic Doppler current profiler (ADCP) attached to a CTD-rosette sampler. The data were sampled during two Meteor cruises in the western tropical Atlantic. The ADCP depth was determined by integration of the vertical velocity measurements, and the maximum depth of the cast was in good agreement with the CTD depth. Vertical shears were calculated for individual ADCP velocity profiles of 140-300-m range to eliminate the unknown horizontal motion of the instrument package. Subsequent raw shear profiles were then averaged with respect to depth to obtain a mean shear profile and its statistics. Typically, the shear standard deviations were about 10(-3) s-1 when using up and down traces simultaneously. The shear profiles were then vertically integrated to get relative velocity profiles. Different methods were tested to transform the relative velocities into absolute velocity profiles, and the results were compared with Pegasus dropsonde measurements. The best results were obtained by integrating the raw velocities and relative velocities over the duration of the cast and correcting for the ship drift determined from the Global Positioning System. Below 1000-m depth a reduction of the measurement range was observed, which results either from a lack of scatterers or instrumental problems at higher pressures.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 28 (10). pp. 1904-1928.
    Publication Date: 2018-04-06
    Description: The mean warm water transfer toward the equator along the western boundary of the South Atlantic is investigated, based on a number of ship surveys carried out during 1990–96 with CTD water mass observations and current profiling by shipboard and lowered (with the CTD/rosette) acoustic Doppler current profiler and with Pegasus current profiler. The bulk of the northward warm water flow follows the coast in the North Brazil Undercurrent (NBUC) from latitudes south of 10°S, carrying 23 Sv (Sv ≡ 106 m3 s−1) above 1000 m. Out of this, 16 Sv are waters warmer than 7°C that form the source waters of the Florida Current. Zonal inflow from the east by the South Equatorial Current enters the western boundary system dominantly north of 5°S, adding transport northwest of Cape San Roque, and transforming the NBUC along its way toward the equator into a surface-intensified current, the North Brazil Current (NBC). From the combination of moored arrays and shipboard sections just north of the equator along 44°W, the mean NBC transport was determined at 35 Sv with a small seasonal cycle amplitude of only about 3 Sv. The reason for the much larger near-equatorial northward warm water boundary current than what would be required to carry the northward heat transport are recirculations by the zonal current system and the existence of the shallow South Atlantic tropical–subtropical cell (STC). The STC connects the subduction zones of the eastern subtropics of both hemispheres via equatorward boundary undercurrents with the Equatorial Undercurrent (EUC), and the return flow is through upwelling and poleward Ekman transport. The persistent existence of a set of eastward thermocline and intermediate countercurrents on both sides of the equator was confirmed that recurred throughout the observations and carry ventilated waters from the boundary regime into the tropical interior. A strong westward current underneath the EUC, the Equatorial Intermediate Current, returns low-oxygen water westward. Consistent evidence for the existence of a seasonal variation in the warm water flow south of the equator could not be established, whereas significant seasonal variability of the boundary regime occurs north of the equator: northwestward alongshore throughflow of about 10 Sv of waters with properties from the Southern Hemisphere was found along the Guiana boundary in boreal spring when the North Equatorial Countercurrent is absent or even flowing westward, whereas during June–January the upper NBC is known to connect with the eastward North Equatorial Countercurrent through a retroflection zone that seasonally migrates up and down the coast and spawns eddies. The equatorial zone thus acts as a buffer and transformation zone for cross-equatorial exchanges, but knowledge of the detailed pathways in the interior including the involved diapycnal exchanges is still a problem.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Elsevier
    In:  In: Interhemispheric Water Exchange in the Atlantic Ocean. , ed. by Goni, G. and Malanotte-Rizzoli, P. Elsevier Oceanography Series, 68 . Elsevier, Amsterdam, Netherlands, pp. 1-22.
    Publication Date: 2019-08-16
    Description: Observations in the central tropical Atlantic are used to investigate the circulation, the variability, and the near-equatorial meridional flow in this oceanic region. Meridional sections confirm that the southern band of the South Equatorial Current is a broad sluggish flow transporting subtropical water northwestward toward the western boundary. Variability in the South Equatorial Current is weak with an annual signal of about 2 cm/s. Recent equatorial flow observations agree with the previously proposed mean flow field, indicating that a permanent tropical circulation exists that is composed of several zonal current and countercurrent bands of small vertical and meridional extent compared to the subtropical gyres. However, wave phenomena superimpose on the mean flow field. On seasonal time scales the variability in the zonal flow field near the equator is dominated by the semiannual cycle in the central and eastern part while the annual cycle dominates in the western part. This seasonal variability is caused by the propagation of equatorial Rossby and Kelvin waves generated mainly by the zonal wind anomaly at the equator. Despite the observations of instantaneous cross-equatorial velocities and of floats crossing the equator it remains unclear whether there is a net cross-equatorial flow in the central tropical Atlantic in addition to cross-equatorial exchanges via thermocline convergence, upwelling and Ekman divergence. Three floats deployed at 200 m and 400 m depth either leave their deployment region at the equator to join the North Equatorial Undercurrent and progress further northward or in two cases have been deployed in the southern hemisphere and drift towards the equator.
    Type: Book chapter , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 32 . pp. 573-584.
    Publication Date: 2020-08-04
    Description: Fifteen profiling floats were injected into the deep boundary current off Labrador. They were ballasted to drift in the core depth of Labrador Sea Water (LSW) at 1500-m depth and were deployed in two groups during March and July/August 1997. Initially, for about three months, the floats were drifting within the boundary current, and the flow vectors were used to determine the mean horizontal structure of the Deep Labrador Current, which was found to be about 100 km wide with an average core speed of 18 cm s−1. North of Flemish Cap the boundary current encounters complicated topography around “Orphan Knoll,” and there the LSW outflow splits up into different routes. One obvious LSW path is eastward through the Charlie Gibbs Fracture Zone and another route is a narrow recirculation toward the central Labrador Sea. A surprising result was that none of the floats were able to follow the boundary current southward to the Grand Banks area and exit into the subtropics. Trajectories and temperature profiles of the eastward drifting floats indicate the importance of the North Atlantic Current for dispersing the floats, even at the level of LSW.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part I: Oceanographic Research Papers, 40 (8). pp. 1547-1557.
    Publication Date: 2016-10-19
    Description: Moored Acoustic Doppler Current Profilers (ADCPs) were used to analyse the daily vertical zooplankton migration and its seasonality. One-year records of vertical velocity and acoustic backscatter were obtained at four stations in the Greenland Sea. Both parameters exhibited a diurnal cycle typical for vertically migrating zooplankton. Upward and downward migration occured in short periods approximately 5 h long, and peak migration velocities were around 1.5 cm s−1. Similar structures were observed at all four mooring sites in the 200–300 m depth range. Farther down, between 1000 and 1400 m, no daily migration was observed. Strong seasonal variations are evident, and both the phase and intensity of the migration pattern change with daylight as the season progresses. In summer and during the polar night the migration became very weak and was only detectable in the displacement of scattering layers. When the day/ night contrast was large, intense upward or downward motion was accompanied by sloping backscatter isopleths. We observed two main scattering layers, a deep layer that varies in depth with season and an almost invariable shallow scattering layer at about 150 m depth. The deep layer was interpreted as the “resting depth” of the migrating plankter, and the latter as their “feeding horizon”. Changes in the “resting depth” from about 400 m in autumn and spring to about 200 m in winter lead to seasonal variations in the migration distance. This behaviour is discussed with respect to environmental conditions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 34 . pp. 1548-1570.
    Publication Date: 2020-08-04
    Description: The deep circulation and related transports of the southern Labrador Sea are determined from direct current observations from ship surveys and a moored current-meter array. The measurements covered a time span from summer 1997 to 1999 and show a well-defined deep boundary current extending approximately out to the 3300-m depth contour and weak reverse currents farther offshore. The flow has a strong barotropic component, and significant baroclinic flow is only found in the shallow Labrador Current at the shelf break and associated with a deep core of Denmark Strait Overflow Water. The total deep-water transport below σΘ = 27.74 kg m−3 was 26 ± 5 Sv (Sv ≡ 106 m3 s−1) comprising Labrador Sea Water (LSW), Gibbs Fracture Zone Water (GFZW), and Denmark Strait Overflow Water (DSOW). Intraseasonal variability of the flow and transport was high, ranging from 15 to 35 Sv, and the annual means differed by 17%. A seasonal cycle is confined to the shallow Labrador Current; in its deeper part, where the mean flow is still strong, no obvious seasonality could be detected. The transport of the interior anticyclonic recirculation was estimated from lowered acoustic Doppler current profiler stations and geostrophy, yielding about 9 Sv. Thus, the net deep-water outflow from the Labrador Sea was about 17 Sv. The baroclinic transport of GFZW and DSOW referenced to the depth of the isopycnal σΘ = 27.80 kg m−3 is only about one-third of the total transport in these layers. Longer-term variations of the total transports are not represented well by the baroclinic contribution.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 34 . pp. 817-843.
    Publication Date: 2020-08-04
    Description: The current system east of the Grand Banks was intensely observed by World Ocean Circulation Experiment (WOCE) array ACM-6 during 1993–95 with eight moorings, reaching about 500 km out from the shelf edge and covering the water column from about 400-m depth to the bottom. More recently, a reduced array by the Institut für Meerskunde (IfM) at Kiel, Germany, of four moorings was deployed during 1999–2001, focusing on the deep-water flow near the western continental slope. Both sets of moored time series, each about 22 months long, are combined here for a mean current boundary section, and both arrays are analyzed for the variability of currents and transports. A mean hydrographic section is derived from seven ship surveys and is used for geostrophic upper-layer extrapolation and isopycnal subdivision of the mean transports into deep-water classes. The offshore part of the combined section is dominated by the deep-reaching North Atlantic Current (NAC) with currents still at 10 cm s−1 near the bottom and a total northward transport of about 140 Sv (Sv ≡ 106 m3 s−1), with the details depending on the method of surface extrapolation used. The mean flow along the western boundary was southward with the section-mean North Atlantic Deep Water outflow determined to be 12 Sv below the σθ = 27.74 kg m−3 isopycnal. However, east of the deep western boundary current (DWBC), the deep NAC carries a transport of 51 Sv northward below σθ = 27.74 kg m−3, resulting in a large net northward flow in the western part of the basin. From watermass signatures it is concluded that the deep NAC is not a direct recirculation of DWBC water masses. Transport time series for the DWBC variability are derived for both arrays. The variance is concentrated in the period range from 2 weeks to 2 months, but there are also variations at interannual and longer periods, with much of the DWBC variability being related to fluctuations and meandering of the NAC. A significant annual cycle is not recognizable in the combined current and transport time series of both arrays. The moored array results are compared with other evidence on deep outflow and recirculation, including recent models of different types and complexity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...