GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    ELSEVIER ACADEMIC PRESS INC
    In:  EPIC3The Role of Body Size in Multispecies Systems, Advances in Ecological Research, ELSEVIER ACADEMIC PRESS INC, 45, pp. 181-223, ISSN: 0065-2504
    Publication Date: 2019-07-16
    Description: Human-induced habitat destruction, overexploitation, introduction of alien species and climate change are causing species to go extinct at unprecedented rates, from local to global scales. There are growing concerns that these kinds of disturbances alter important functions of ecosystems. Our current understanding is that key parameters of a community (e.g. its functional diversity, species composition, and presence/absence of vulnerable species) reflect an ecological network’s ability to resist or rebound from change in response to pressures and disturbances, such as species loss. If the food web structure is relatively simple, we can analyse the roles of different species interactions in determining how environmental impacts translate into species loss. However, when ecosystems harbour species-rich communities, as is the case in most natural systems, then the complex network of ecological interactions makes it a far more challenging task to perceive how species’ functional roles influence the consequences of species loss. One approach to deal with such complexity is to focus on the functional traits of species in order to identify their respective roles: for instance, large species seem to be more susceptible to extinction than smaller species. Here, we introduce and analyse the marine food web from the high Antarctic Weddell Sea Shelf to illustrate the role of species traits in relation to network robustness of this complex food web. Our approach was threefold: firstly, we applied a new classification system to all species, grouping them by traits other than body size; secondly, we tested the relationship between body size and food web parameters within and across these groups and finally, we calculated food web robustness. We addressed questions regarding (i) patterns of species functional/trophic roles, (ii) relationships between species functional roles and body size and (iii) the role of species body size in terms of network robustness. Our results show that when analyzing relationships between trophic structure, body size and network structure, the diversity of predatory species types needs to be considered in future studies.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Elsevier ACADEMIC PRESS INC
    In:  EPIC3Environmental Pollution, Elsevier ACADEMIC PRESS INC, 161, pp. 134-142
    Publication Date: 2019-07-16
    Description: Organochlorine compounds (OC) were determined in Arctic bivalves (Mya truncata, Serripes groenlandicus, Hiatella arctica, Chlamys islandica) from Svalbard with regard to differences in geographic location, species and variations related to their size and age. Higher chlorinated polychlorinated biphenyls (PCB 101- PCB 194), chlordanes and α-hexachlorocyclohexane (α-HCH) were consistently detected in the bivalves and PCBs dominated the OC load in the organisms. OC concentrations were highest in Mya truncata and the lowest in Serripes groenlandicus. Species-specific OC levels were likely related to differences in the species' food source, as indicated by the δ13C results, rather than size and age. Higher OC concentrations were observed in bivalves from Kongsfjorden compared to the northern sampling locations Liefdefjorden and Sjuøyane. The spatial differences might be related to different water masses influencing Kongsfjorden (Atlantic) and the northern locations (Arctic), with differing phytoplankton bloom situations.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    ELSEVIER ACADEMIC PRESS INC
    In:  EPIC3Advances in Ecological Research, ELSEVIER ACADEMIC PRESS INC, 46, pp. 351-426, ISSN: 0065-2504
    Publication Date: 2019-07-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Elsevier ACADEMIC PRESS INC
    In:  EPIC3Journal of Experimental Marine Biology and Ecology, Elsevier ACADEMIC PRESS INC, 413, pp. 100-105, ISSN: 0022-0981
    Publication Date: 2019-07-16
    Description: Temperature changes during ENSO challenge the fauna of the Pacific South American coast. In many ectotherm benthic species pelagic larvae are the most important dispersal stage, which may, however, be particularly vulnerable to such environmental stress. Thermal limitation in aquatic ecotherms is hypothesized to be reflected first in the aerobic scope of an animal. Here we present results on whole animal oxygen consumption and on the activities of two metabolic key enzymes, citrate synthase (CS) and pyruvate kinase (PK)) of Cancer setosus zoeal larvae, acclimated to different temperatures. Larvae acclimated to cooler temperatures (12 and 16 °C) were able to compensate for the temperature effect as reflected in elevated mass specific respiration rates (MSR) and enzyme activities. In contrast, warm acclimated larvae (20 and 22 °C) seem to have reached their upper thermal limits, which is reflected in MSR decoupling from temperature and low Q10 values (Zoea I: 1.4; Zoea III: 1.02). Thermal deactivation of CS in vitro occurred close to habitat temperature (between 20 and 24 °C), indicating instability of the enzyme close to in vivo thermal limits. The capacity of anaerobic metabolism, reflected by PK, was not influenced by temperature, but increased with instar, reflecting behavioral changes in larval life style. Functioning of the metabolic key enzyme CS was identified to be one possible key for larval limitation in temperature tolerance.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...