GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Cham :Springer International Publishing AG,
    Schlagwort(e): Porous materials. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (314 pages)
    Ausgabe: 1st ed.
    ISBN: 9783319118949
    Serie: Terrestrial Environmental Sciences Series
    DDC: 620.116
    Sprache: Englisch
    Anmerkung: Intro -- Contents -- Contributing Authors -- 1 Introduction -- 1.1 Motivation -- 1.2 Application Areas -- 1.3 Scope of This Book -- References -- Part I Closed Form Solutions -- 2 Verification Tests -- 2.1 Heat Conduction -- 2.1.1 A 1D Steady-State Temperature Distribution, Boundary Conditions of 1st Kind -- 2.1.2 A 1D Steady-State Temperature Distribution, Boundary Conditions of 1st and 2nd Kind -- 2.1.3 A 2D Steady-State Temperature Distribution, Boundary Conditions of 1st Kind -- 2.1.4 A 2D Steady-State Temperature Distribution, Boundary Conditions of 1st and 2nd Kind -- 2.1.5 A 3D Steady-State Temperature Distribution -- 2.1.6 A Transient 1D Temperature Distribution, Time-Dependent Boundary Conditions of 1st Kind -- 2.1.7 Transient 1D Temperature Distributions, Time-Dependent Boundary Conditions of 2nd Kind -- 2.1.8 Transient 1D Temperature Distributions, Non-Zero Initial Temperature, Boundary Conditions of 1st and 2nd Kind -- 2.1.9 A Transient 2D Temperature Distribution, Non-Zero Initial Temperature, Boundary Conditions of 1st and 2nd Kind -- 2.2 Liquid Flow -- 2.2.1 A 1D Steady-State Pressure Distribution, Boundary Conditions of 1st Kind -- 2.2.2 A 1D Steady-State Pressure Distribution, Boundary Conditions of 1st and 2nd Kind -- 2.2.3 A 2D Steady-State Pressure Distribution, Boundary Conditions of 1st Kind -- 2.2.4 A 2D Steady-State Pressure Distribution, Boundary Conditions of 1st and 2nd Kind -- 2.2.5 A 3D Steady-State Pressure Distribution -- 2.2.6 A Hydrostatic Pressure Distribution -- 2.2.7 A Transient 1D Pressure Distribution, Time-Dependent Boundary Conditions of 1st Kind -- 2.2.8 Transient 1D Pressure Distributions, Time-Dependent Boundary Conditions of 2nd Kind -- 2.2.9 Transient 1D Pressure Distributions, Non-Zero Initial Pressure, Boundary Conditions of 1st and 2nd Kind. , 2.2.10 A Transient 2D Pressure Distribution, Non-Zero Initial Pressure, Boundary Conditions of 1st and 2nd Kind -- 2.3 Gas Flow -- 2.3.1 A 1D Steady-State Gas Pressure Distribution, Boundary Conditions of 1st Kind -- 2.3.2 A 1D Steady-State Gas Pressure Distribution, Boundary Conditions of 1st and 2nd Kind -- 2.3.3 A 2D Steady-State Gas Pressure Distribution -- 2.3.4 A 3D Steady-State Gas Pressure Distribution -- 2.4 Deformation Processes -- 2.4.1 An Elastic Beam Undergoes Axial Load -- 2.4.2 An Elastic Plate Undergoes Simple Shear -- 2.4.3 An Elastic Cuboid Undergoes Load Due to Gravity -- 2.4.4 Stresses Relax in a Deformed Cube of Norton Material -- 2.4.5 A Cube of Norton Material Creeps Under Constant Stress -- 2.4.6 A Cube of Norton Material Undergoes Tensile Strain Increasing Linearly with Time -- 2.4.7 A Cube of Norton Material Undergoes Compressive Stress Increasing Linearly with Time -- 2.5 Mass Transport -- 2.5.1 Solute Transport Along Permeable Beams, Hydraulic and Solute Boundary Conditions of 1st and 2nd Kind -- 2.5.2 Solute Transport Along Permeable Beams with an Inert, a Decaying, and an Adsorbing Solute, Time-Dependent Boundary Conditions of 1st Kind -- 2.5.3 A Transient 2D Solute Distribution -- 2.6 Hydrothermal Processes -- 2.6.1 A Transient 1D Temperature Distribution in a Moving Liquid -- 2.6.2 A Transient 2D Temperature Distribution in a Moving Liquid -- 2.7 Hydromechanical Coupling -- 2.7.1 A Permeable Elastic Beam Deforms Under Steady-State Internal Liquid Pressure -- 2.7.2 A Permeable Elastic Square Deforms Under Constant Internal Liquid Pressure -- 2.7.3 A Permeable Elastic Cube Deforms Under Constant Internal Liquid Pressure -- 2.7.4 A Permeable Elastic Cuboid Undergoes Static Load Due to Gravity and Hydrostatic Liquid Pressure. , 2.7.5 A Permeable Elastic Beam Deforms Under Transient Internal Liquid Pressure. Specified Boundary Conditions are Time-Dependent and of 1st Kind -- 2.7.6 A Permeable Elastic Beam Deforms Under Transient Internal Liquid Pressure. Specified Boundary Conditions are Time-Dependent and of 1st and 2nd Kind -- 2.7.7 Biot's 1D Consolidation Problem: Squeezing of a Pressurized Column Causes the Liquid to Discharge from the Domain -- 2.8 Thermomechanics -- 2.8.1 An Elastic Beam Deforms Due to an Instant Temperature Change -- 2.8.2 An Elastic Square Deforms Due to an Instant Temperature Change -- 2.8.3 An Elastic Cube Deforms Due to an Instant Temperature Change -- 2.8.4 An Elastic Cuboid Undergoes Load Due to Gravity and Instant Temperature Change -- 2.8.5 An Elastic Beam Deforms Due to a Transient Temperature Change. Temperature Boundary Conditions are Time-Dependent and of 1st Kind -- 2.8.6 Elastic Beams Deform Due to a Transient Temperature Change. Temperature Boundary Conditions are Time-Dependent and of 2nd Kind -- 2.8.7 Stresses Relax in a Cube of Norton Material Undergoing an Instant Temperature Change -- 2.9 Thermo-Hydro-Mechanical Coupling -- 2.9.1 A Permeable Elastic Cuboid Deforms Due to Gravity, Internal Liquid Pressure, and Instant Temperature Change -- 2.9.2 A Permeable Elastic Beam Deforms Due to Cooling Liquid Injection -- References -- Part II Single Processes -- 3 Groundwater Flow---Theis' Revisited -- 3.1 Problem Definition -- 3.2 Theis' 1.5D and 2.5D -- 3.3 Theis' 2D -- 3.4 Theis' 3D -- 3.5 Results -- Reference -- 4 Richards Flow -- 4.1 Comparison with Differential Transform Method (DTM) -- 4.2 Undrained Heating -- 4.2.1 Definition (1D) -- 4.2.2 Heating a Saturated Sample -- 4.2.3 Heating an Unsaturated Sample -- 4.2.4 Results -- References -- 5 Multi-Componential Fluid Flow -- 5.1 Basic Equations -- 5.1.1 Mass Balance Equation. , 5.1.2 Fractional Mass Transport Equation -- 5.1.3 Heat Transport Equation -- 5.1.4 Equation of State -- 5.2 Examples -- 5.2.1 Tracer Test -- 5.2.2 Bottom Hole Pressure -- 5.2.3 Plume Migration -- 5.2.4 CO2 Leakage Through Abondoned Well -- 5.2.5 Thermo-Chemical Energy Storage -- References -- 6 Random Walk Particle Tracking -- 6.1 Particle Tracking in Porous Medium -- 6.1.1 Particle Tracking in Porous Medium: 1D Case Study -- 6.1.2 Particle Tracking in Porous Medium: 2D Case Study -- 6.1.3 Particle Tracking in Porous Medium: 3D Case Study -- 6.2 Particle Tracking in Pore Scale -- 6.2.1 Particle Tracking in Pore Scale: 2D Case Study -- 6.2.2 Particle Tracking in Pore Scale: 3D Case Study -- 6.3 Particle Tracking with Different Flow Processes -- 6.3.1 Forchheimer Term -- 6.3.2 Forchheimer Flow in 1D Porous Medium -- 6.3.3 Groundwater Flow Regimes -- 6.4 Particle Tracking in Fractured Porous Media -- 6.4.1 Uncertainty in Flow, Preferential Flow -- References -- 7 Mechanical Processes -- 7.1 Theory and Implementation -- 7.2 Deformation of a Steel Tubing -- 7.2.1 Analytical Solution---Linear Elasticity -- 7.2.2 Numerical Solution -- 7.3 Deformation of a Thick-Walled, Hollow Sphere -- 7.3.1 Analytical Solution---Linear Elasticity -- 7.3.2 Numerical Solution---Linear Elasticity -- 7.3.3 Analytical Solution---Elastoplasticity -- 7.3.4 Numerical Solution---Elastoplastic Deformation of a Sphere -- 7.4 Deformation of an Artificial Salt Cavern -- 7.4.1 Linear Elastic Material -- 7.4.2 Elastoplastic Material -- References -- Part III Coupled Processes -- 8 Density-Dependent Flow -- 8.1 Haline Setups -- 8.1.1 Development and Degregation of a Freshwater Lens -- 8.2 Thermohaline Setups -- 8.2.1 Stability in Rayleigh Convection -- References -- 9 Multiphase Flow and Transport with OGS-ECLIPSE -- 9.1 Introduction -- 9.2 Test Cases. , 9.2.1 Two-Phase Flow with Two-Phase Transport -- 9.2.2 Gas Phase Partitioning -- References -- 10 Coupled THM Processes -- 10.1 HM/THM Processes in a Faulted Aquifer -- 10.1.1 Definition -- 10.1.2 Initial and Boundary Conditions -- 10.1.3 Material Properties -- 10.1.4 Results -- 10.1.5 Initial Conditions Effects -- 10.1.6 Temperature Effects THM Simulation -- 10.2 Injection Induced Hydromechanical (HM) Processes -- 10.2.1 Definition -- 10.2.2 Solution -- 10.2.3 Model Description -- 10.2.4 Results -- 10.3 AnSichT THM Test Case -- 10.3.1 Definition -- 10.3.2 Results -- 10.4 Consolidation Under Two-Phase Flow Condition: Five Spot Example -- References -- 11 Thermo-Mechanics: Stress-Induced Heating of Elastic Solids -- 11.1 Theory -- 11.2 Problem Definition -- 11.3 Analytical Solution -- 11.4 Numerical Solution -- 11.5 Results -- References -- 12 Reactive Transport -- 12.1 Kinetic Dissolution of Non-aqueous Phase Liquids -- 12.1.1 Hansen and Kueper Benchmark -- 12.2 Kinetic Mineral Dissolution/Precipitation -- 12.2.1 Simulation of a Kinetic Calcite/Dolomite Dissolution Front -- 12.3 Local Thermal Nonequilibrium and Gas--Solid Reactions -- 12.3.1 Introduction -- 12.3.2 Interphase Heat Transfer -- 12.3.3 Interphase Mass Transfer and Heat of Reaction -- 12.3.4 Interphase Friction -- 12.3.5 Steady State Heat Conduction with Heat Generation and Convection Boundary Conditions -- References -- Appendix AIntroduction to OpenGeoSys (OGS):OGS-Overview -- Appendix BOGS-Software Engineering -- Appendix CData Preprocessing and Model Setupwith OGS -- Appendix DGINA-OGS -- Appendix EScientific Visualization and Virtual Reality -- Appendix FOGS High-Performance-Computing.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Cham :Springer International Publishing AG,
    Schlagwort(e): Chemistry. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (82 pages)
    Ausgabe: 1st ed.
    ISBN: 9783319528090
    Serie: SpringerBriefs in Earth System Sciences Series
    DDC: 628.1140113
    Sprache: Englisch
    Anmerkung: Intro -- Foreword -- Acknowledgements -- Contents -- 1 Introduction -- 1.1 Catchment Description -- 1.1.1 Topography and Climate -- 1.1.2 Socio-Economy and Land Cover -- 1.1.3 Hydrology -- 1.1.4 Hydrogeology -- 1.1.5 Water Quality -- 1.2 Potential Pressures and Impacts on Acheng Water Supply -- 1.2.1 Chemical Pollutions by Industrial Point Sources -- 1.2.2 Nitrate Pollution from Diffusive Sources -- 1.2.3 Future Water Demand -- 2 Modelling Strategy -- 2.1 Work Flow -- 2.2 Overview of Available Data-Sets -- 2.3 Software Requirements -- 3 Stationary Groundwater Model -- 3.1 Meshing -- 3.1.1 2D Meshing -- 3.1.2 Volume Meshing -- 3.1.3 Adding Soil Layer -- 3.1.4 Mesh Quality -- 3.2 File Transformation into OGS Input Files -- 3.3 Boundary Conditions -- 3.3.1 Source Terms -- 3.3.2 Boundary Conditions -- 3.3.3 Initial Conditions -- 3.4 Material Properties -- 3.5 Additional OGS Input Files -- 3.5.1 Process Specification -- 3.5.2 Numerics -- 3.5.3 Time Stepping -- 3.5.4 Output -- 3.6 Model Execution -- 3.7 Results -- 4 Reactive Nitrate Transport Model -- 4.1 Nitrate Allocation and Degradation in the Subsurface -- 4.2 Media Characterization -- 4.2.1 Material Component Parameters -- 4.2.2 Material Properties -- 4.2.3 Material Solid Properties -- 4.2.4 Material Fluid Properties -- 4.3 Kinetic Reaction Definition -- 4.4 Boundary Conditions -- 4.4.1 Initial Conditions -- 4.4.2 Source Terms -- 4.4.3 Boundary Conditions -- 4.5 Adaptation of Additional Input Files -- 4.5.1 Process Specification -- 4.5.2 Time Stepping -- 4.5.3 Numerics -- 4.5.4 Output -- 4.6 Model Execution -- 4.7 Model Results -- 5 Reactive Point Pollutants Model Within a Transient Flow Field -- 5.1 Process Definition -- 5.2 Material Component Properties -- 5.3 Initial and Boundary Conditions -- 5.3.1 Initial Conditions -- 5.3.2 Source Terms -- 5.3.3 Boundary Conditions -- 5.4 Model Execution. , 5.5 Model Results -- Appendix A Symbols -- Appendix B Keywords -- References.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    Cham :Springer International Publishing AG,
    Schlagwort(e): Physical geography. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (245 pages)
    Ausgabe: 1st ed.
    ISBN: 9783319292243
    Serie: Terrestrial Environmental Sciences Series
    DDC: 620.116
    Sprache: Englisch
    Anmerkung: Intro -- Preface -- Contents -- Contributors -- Happy Birthday-Dear Wenqing -- Part I Book Topic -- 1 Benchmarking Initiatives -- 1.1 DECOVALEX -- 1.1.1 DECOVALEX Framework -- 1.1.2 Current DECOVALEX Activities -- 1.1.3 DECOVALEX Success Story -- 1.2 Subsurface Environmental Simulation Benchmarking (SeS-Bench) -- 1.3 MoMaS -- 1.3.1 Finished Benchmarks -- 1.3.2 Currently Running Benchmarks -- Part II Single Processes -- 2 Thermal Processes -- 2.1 Transient Heat Conduction in a Transversal Isotropic Porous Medium -- 2.1.1 Theory -- 2.1.2 Problem Definition -- 2.1.3 Analytical Solution -- 2.1.4 Results -- 2.2 Freezing-Thawing -- 2.2.1 Mathematical Model -- 2.2.2 Freezing and Thawing Processes -- 2.2.3 Benchmark Validation and Discussion -- 2.3 Shallow Geothermal Systems---Borehole Heat Exchanger -- 2.3.1 Borehole Heat Exchangers---Comparison to Line Source Models -- 2.3.2 Borehole Heat Exchangers---Sandbox Benchmark -- 3 Flow Processes -- 3.1 Flow in Fracture/Matrix System -- 3.1.1 Theory -- 3.1.2 Problem Definition -- 3.1.3 Analytical Solution -- 3.2 Water Table Experiment -- 3.2.1 Description -- 3.2.2 Model Setup -- 3.2.3 Results -- 4 Deformation Processes -- 4.1 Linear Elasticity---Shear and Torsion -- 4.1.1 Due to Specified Surface Loads an Elastic Square Deforms into a Lozenge -- 4.1.2 Due to Specified Surface Loads an Elastic Plate Undergoes Simple Shear -- 4.1.3 Due to Specified Surface Loads an Elastic Plate Undergoes Shear in Two Planes -- 4.1.4 Due to Specified Surface Loads a Rectangular Elastic Beam Undergoes Torsion -- 4.1.5 Due to Specified Surface Loads an Elastic Plate Takes a Hyperbolic Shape -- 4.1.6 Two Elastic Plates Are Deformed in a Stress Field with Three Non-Constant Components of Shear -- 4.2 Norton Creep -- 4.2.1 Due to Instant Surface Loads a Square of Norton Material Deforms into a Lozenge. , 4.2.2 Due to Increasing Surface Loads a Square of Norton Material Deforms into a Lozenge -- 4.2.3 Due to Instant Surface Loads a Plate of Norton Material Undergoes Simple Shear -- 4.2.4 Due to Increasing Surface Loads a Plate of Norton Material Undergoes Simple Shear -- 4.2.5 Due to Instant Surface Loads a Plate of Norton Material Undergoes Shear in Two Planes -- 4.2.6 Due to Increasing Surface Loads a Plate of Norton Material Undergoes Shear in Two Planes -- 4.3 Thick Walled Pipe -- 4.3.1 Definition -- 4.3.2 Solution -- 4.3.3 Results -- 4.4 Cylinder Triaxial Stress Test -- 4.4.1 Definition -- 4.4.2 Results -- 4.5 Sondershausen Drift -- 4.5.1 Definition -- 4.5.2 Solution -- 4.5.3 Results -- 4.6 Lubby2 and Minkley Models Under Simple Shear Loading -- Part III Coupled Processes -- 5 Variable Density Flow -- 5.1 Tidal Forcing in a Sandy Beach Aquifer -- 5.1.1 Overview and Problem Description -- 5.1.2 Model Setup -- 5.1.3 Results -- 5.2 Investigations on Mesh Convergence -- 5.2.1 Overview -- 5.2.2 Problem Description -- 5.2.3 Results -- 5.2.4 Conclusions and Outlook -- 6 Multiphase Flow -- 6.1 Gas Injection and Migration in Fully Water Saturated Column -- 6.1.1 Physical Scenario -- 6.1.2 Model Parameters and Numerical Settings -- 6.1.3 Results and Analysis -- 6.2 MoMaS Benchmark 2: Gas Injection and Migration in Partially Water Saturated Column -- 6.2.1 Physical Scenario -- 6.2.2 Results and Analysis -- 6.3 Heat Pipe Problem with Phase Appearance and Disappearance -- 6.3.1 Physical Scenario -- 6.3.2 Model Parameters and Numerical Settings -- 6.3.3 Results and Analysis -- 7 Hydro-Mechanical (Consolidation) Processes -- 7.1 Mandel-Cryer Effects -- 7.1.1 Increasing Axial Load on a Liquid-Filled Elastic Column Causes an Increase in Liquid Pressure -- 7.1.2 Instant Axial Load on a Liquid-Filled Elastic Column Causes an Increase in Liquid Pressure. , 7.1.3 Mandel's Setup: Instant Squeezing of a Liquid-Filled Elastic Column Perpendicular to its Central Axis Causes an Increase in Liquid Pressure -- 7.2 Mont Terri Project---HM-behaviour in the EZB Niche -- 7.2.1 Model Setup -- 7.2.2 Results -- 7.3 Hydro-Mechanical Application: SEALEX Experiment -- 7.3.1 Governing Equations -- 7.3.2 Parameter Identification -- 7.3.3 Compression Under Suction Control -- 7.3.4 1/10 Scale Mock-Up Tests -- 7.3.5 Conclusion -- 8 Thermomechanics -- 8.1 Heated Beams and Plates -- 8.1.1 An Elastic Beam Deformes Due to an Instant Temperature Change -- 8.1.2 An Elastic Plate Deformes in 3D Due to an Instant Temperature Change -- 8.1.3 A Modification of the Previous Example with Focus on the Vicinity of the Origin -- 8.2 Thermoelasticity of a Pipe in Cement -- 8.2.1 Basic Equations -- 8.2.2 Boundary Conditions -- 8.2.3 Analytical Solution -- 8.2.4 Numerical Simulation -- 9 Coupled THM-Processes -- 9.1 2D Axially Symmetric and 3D Simulations of THM Processes at the EBS Experiment, Horonobe URL (Japan) -- 9.1.1 Introduction -- 9.1.2 Model Setup -- 9.1.3 Discussion of Results -- 9.2 HM/THM Processes in a Faulted Aquifer -- 9.2.1 Definition -- 9.2.2 Initial and Boundary Conditions -- 9.2.3 Material Properties -- 9.2.4 Results -- 9.2.5 Initial Conditions Effects -- 9.2.6 Temperature Effects THM Simulation -- 9.3 Consolidation Around a Point Heat Source -- 9.3.1 Governing Equations -- 9.3.2 Analytical Solution -- 9.3.3 Numerical Solution -- 9.3.4 Results -- 10 Reactive Transport -- 10.1 Sequential Chlorinated Hydrocarbons Degradation -- 10.1.1 Definition -- 10.1.2 Results -- 10.2 PSI---Reactive Transport Benchmark -- 10.2.1 Definition of the Problem Set-Up -- 10.2.2 Description of the Coupled Code -- 10.2.3 Results -- 10.2.4 Summary -- 11 Mechanical-Chemical (MC) Processes. , 11.1 Permeability Evolution of a Quartz Fracture Due to Free-Face Dissolution and Pressure Solution -- 11.1.1 Theory -- 11.1.2 Example -- 11.2 Free-Face Dissolution from Granite Fracture Surfaces -- 11.2.1 Theory -- 11.2.2 Problem Definition -- 11.2.3 OGS-IPQC Solution -- 11.2.4 Phreeqc Solution -- 11.2.5 Results -- 12 THC Processes in Energy Systems -- 12.1 Water Adsorption to Zeolites -- 12.1.1 Experimental Data -- 12.1.2 Theory -- 12.1.3 Benchmark: In Equilibrium -- 12.1.4 Benchmark: Starting at 99% of Equilibrium Loading -- 12.1.5 Benchmark: Trajectories in Pressure-Temperature Space -- Appendix A GINA_OGS -- A.1 Pre-processing -- A.2 Mesh Generation -- A.3 Post-processing -- A.4 Data Interface -- Appendix B ogs6 Overview -- Symbols -- References -- Index.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    Cham :Springer International Publishing AG,
    Schlagwort(e): Earth sciences. ; Hydrogeology. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (310 pages)
    Ausgabe: 1st ed.
    ISBN: 9783319682259
    Serie: Terrestrial Environmental Sciences Series
    DDC: 550
    Sprache: Englisch
    Anmerkung: Intro -- Preface -- Contents -- Contributors -- Dr. Uwe-Jens Görke -- Symbols -- Part I Introduction -- 1 Introduction -- 1.1 Recent Developments in THMC Research -- 1.2 Events -- 1.3 Literature Review -- 1.3.1 General and Review Works -- 1.3.2 Nuclear Waste Management -- 1.3.3 Geological CO2 Storage -- 1.3.4 Geothermal Energy Systems -- 1.3.5 Reservoir Exploitation and Drilling -- 1.3.6 Continuous Workflows -- 1.4 Bibliography -- 1.5 DECOVALEX-2019 -- Part II Single Processes -- 2 H Processes -- 2.1 Toth's Box -- 2.2 Flow Under a Dam -- 2.3 A Gallery of Disposal Wells -- 2.4 A Catchment -- 2.5 A Gallery of Recharge Wells -- 2.6 H Processes in Stochastic Discrete Fracture Networks -- 2.6.1 Problem Definition -- 2.6.2 Input Files -- 2.6.3 Results -- 3 M Processes -- 3.1 A Thick Plate Undergoes Compression -- 3.2 A Thick Plate Undergoes Tension -- 3.3 A Thick Plate Undergoes Compression and Tension -- 3.4 A Thick Plate Undergoes Tension and Shear -- 3.5 A Thick Plate Undergoes Tension and Twist -- 3.6 A Double Fourier Series Representation -- 3.7 A Thick Plate, Bottom Loads -- 3.8 A Cuboid, Top Loads, Bottom Loads -- 3.9 A Cuboid, Bottom Loads -- 3.10 A Cuboid, Top Loads -- 3.11 A Cube Undergoes Uniform Compression, Anisotropy Parallel to X-Axis -- 3.12 A Cuboid Undergoes Load Due to Gravity, Anisotropy Parallel to X-Axis -- 3.13 A Thick Plate Undergoes Lateral Compression, Anisotropy Parallel to Y-Axis -- 3.14 A Thick Plate Deforms Under Its Own Weight, Anisotropy Parallel to Y-Axis -- 3.15 A Thick Plate Undergoes Shear, Anisotropy Parallel to Z-Axis -- 3.16 A Cuboid Deformes Under Its Own Weight, Anisotropy Parallel to Z-Axis -- 3.17 A Viscoelastic (LUBBY2) Material in Simple-Shear Creep -- 3.18 Triaxial Compression of an Elasto-Plastic Material with Hardening Based on Ehlers' Yield Surface -- 3.18.1 Introduction -- 3.18.2 Benchmark. , 3.18.3 Drucker-Prager as a Special Case -- 3.19 Material Forces -- 3.19.1 Benchmark on Material Forces: A Non-uniform Bar in Tension -- 4 T Processes -- 4.1 Effective Thermal Conductivity -- 4.1.1 Introduction and Theory -- 4.1.2 Model Setup -- Part III Coupled Processes -- 5 HH Processes -- 5.1 Coupling OpenGeoSys and HYSTEM-EXTRAN for the Simulation of Pipe Leakage -- 5.1.1 Analytical Solution of Stationary Constant Water Level-Driven Infiltration into a Horizontally Layered Soil Column -- 5.1.2 Physical Experiment of Transient, Constant Water Level-Driven Infiltration into a Homogeneous Soil Column -- 5.1.3 Physical Experiment of Transient, Variable Water Level-Driven Infiltration into a Homogeneous Soil Column -- 5.2 Coupling WEAP and OpenGeoSys for a Decision Support System for Integrated Water Resources Management -- 5.2.1 Background -- 5.2.2 General Concept -- 5.2.3 Software Concept -- 5.2.4 Benchmark Problem -- 5.3 Coupling mHM with OGS for Catchment Scale Hydrological Modeling -- 5.3.1 mHM -- 5.3.2 Structure of the Coupled Model mHM#OGS -- 5.3.3 Model Setup in a Catchment -- 5.3.4 Model Verification -- 6 H2 Processes -- 6.1 Infiltration in Homogeneous Soil -- 6.1.1 Definition -- 6.1.2 Model Configuration -- 6.1.3 Results -- 6.2 Liakopoulos Experiment -- 6.2.1 Definition -- 6.2.2 Model Configuration -- 6.2.3 Results -- 6.3 McWhorter Problem -- 6.3.1 Definition -- 6.3.2 Model Configuration -- 6.3.3 Results -- 7 HT (Convection) Processes -- 7.1 3D Benchmark of Free Thermal Convection in a Faulted System -- 7.1.1 Introduction -- 7.1.2 Problem Formulation HT -- 7.1.3 Numerical Benchmark -- 7.1.4 Results -- 7.1.5 OGS-6 and OGS-5 Computing Time -- 7.1.6 Summary -- 7.2 2D Benchmark of Large-Scale Free Thermal Convection -- 7.2.1 Problem Formulation -- 7.2.2 Numerical Benchmark -- 7.2.3 Results -- 7.2.4 Summary. , 7.3 Two-Dimensional Transient Thermal Advection -- 7.3.1 Transient 2D Heat Transport with Moving Liquid -- 8 HM Processes -- 8.1 Fluid Injection in a Fault Zone Using Interface Elements with Local Enrichment -- 8.1.1 Model Approach -- 8.1.2 Model Set-Up -- 8.1.3 Results -- 9 TM Processes -- 9.1 A Linear Temperature Distribution -- 9.2 A Steady-State Antisymmetric Temperature Distribution -- 9.3 A Transient Antisymmetric Temperature Distribution -- 9.4 A Bilinear Temperature Distribution -- 9.5 A Temperature Distribution Represented by a Quadratic Form -- 9.6 A Temperature Distribution Represented by a Fourier Series -- 9.7 A Phase-Field Model for Brittle Fracturing of Thermo-Elastic Solids -- 9.7.1 The Model -- 9.7.2 Single-edge-notched Isothermal Tensile Test -- 9.7.3 Thermo-Mechanical Tests -- 10 THM Processes -- 10.1 Liquid Flow and Heat Transport in a Permeable Elastic Beam I -- 10.2 Liquid Flow and Heat Transport in a Permeable Elastic Beam II -- 10.3 Liquid Flow and Heat Transport in a Permeable Elastic Beam III -- 10.4 Mass Conservation, Thermal Pressurization and Stress Distribution in Coupled Thermo-Hydro-Mechanical Processes -- 10.4.1 Governing Equations -- 10.4.2 OGS-5 -- 10.4.3 OGS-6 -- 10.5 Thermo-Hydro-Mechanical Freezing Benchmark (CIF Test) -- 10.5.1 Governing Equations -- 10.5.2 Benchmark Description -- 11 RTM Processes -- 11.1 Reactive Mass Transport in a Compacted Granite Fracture with Pressure Solution Acting upon Grain Contacts -- 11.1.1 Theory -- 11.1.2 Example -- 12 THC-Processes -- 12.1 A Benchmark Case for the Simulation of Thermochemical Heat Storage -- 12.1.1 Introduction -- 12.1.2 Implementational Details -- 12.1.3 Benchmark Description -- 12.1.4 Results -- Appendix A OpenGeoSys-6 -- A.1 OGS-6: Development and Challenges -- A.1.1 Introduction -- A.1.2 Overview of Processes -- A.1.3 Implementation of Workflows. , A.1.4 Transition from OGS-5 -- A.1.5 Heterogeneous Computing -- A.2 Software Engineering and Continuous Integration -- A.3 High-Performance-Computing -- A.3.1 Why is High-Performance-Computing Necessary? -- A.3.2 Parallelization Approaches -- A.3.3 Results -- A.3.3.1 Description of the Benchmark Example -- A.3.3.2 Run Times and Speedup for IO, Assembly and Linear Solver -- A.4 Data Integration and Visualisation -- Appendix B GINA_OGS: A Tutorial of a Geotechnical Application -- Appendix C OGS: Input Files -- References.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Materialart: Online-Ressource
    Seiten: Online-Ressource (118 p. = 8,28 MB) , ill., graphs
    Ausgabe: [Elektronische Ressource]
    Serie: Verbundvorhaben SAFIRA Teilprojekt C,2.1
    Sprache: Deutsch , Englisch
    Anmerkung: Contract BMBF 02WT9948/0. - nIndex p. 69 - 71. - Appendix in English , Differences between the printed and electronic version of the document are possible , Also available as printed version , Systemvoraussetzungen: Acrobat reader.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...