GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-11-16
    Description: Over the last decades, it has been reported that the habitat of the Southern Ocean (SO) key species Antarctic krill (Euphausia superba) has contracted to high latitudes, putatively due to reduced winter sea ice coverage, while salps as Salpa thompsoni have extended their dispersal to the former krill habitats. To date, the potential implications of this population shift on the biogeochemical cycling of the limiting micronutrient iron (Fe) and its bioavailability to SO phytoplankton has never been tested. Based on uptake of fecal pellet (FP)- released Fe by SO phytoplankton, this study highlights how efficiently krill and salps recycle Fe. To test this, we collected FPs of natural populations of salps and krill, added them to the same SO phytoplankton community, andmeasured the community’s Fe uptake rates. Our results reveal that both FP additions yielded similar dissolved iron concentrations in the seawater. Per FP carbon added to the seawater, 4.8 ± 1.5 times more Fe was taken up by the same phytoplankton community from salp FP than from krill FP, suggesting that salp FP increased the Fe bioavailability, possibly through the release of ligands. With respect to the ongoing shift from krill to salps, the potential for carbon fixation of the Fe-limited SO could be strengthened in the future, representing a negative feedback to climate change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    CELL PRESS
    In:  EPIC3Current Biology, CELL PRESS, 27(14), pp. 2194-2201, ISSN: 0960-9822
    Publication Date: 2024-05-13
    Description: Biological clocks are a ubiquitous ancient and adaptive mechanism enabling organisms to anticipate environmental cycles and to regulate behavioral and physiological processes accordingly [1]. Although terrestrial circadian clocks are well understood, knowledge of clocks in marine organisms is still very limited [2–5]. This is particularly true for abundant species displaying large-scale rhythms like diel vertical migration (DVM) that contribute significantly to shaping their respective ecosystems [6]. Here we describe exogenous cycles and endogenous rhythms associated with DVM of the ecologically important and highly abundant planktic copepod Calanus finmarchicus. In the laboratory, C. finmarchicus shows circadian rhythms of DVM, metabolism, and most core circadian clock genes (clock, period1, period2, timeless, cryptochrome2, and clockwork orange). Most of these genes also cycle in animals assessed in the wild, though expression is less rhythmic at depth (50–140 m) relative to shallow-caught animals (0–50 m). Further, peak expressions of clock genes generally occurred at either sunset or sunrise, coinciding with peak migration times. Including one of the first field investigations of clock genes in a marine species [5, 7], this study couples clock gene measurements with laboratory and field data on DVM. While the mechanistic connection remains elusive, our results imply a high degree of causality between clock gene expression and one of the planet’s largest daily migrations of biomass. We thus suggest that circadian clocks increase zooplankton fitness by optimizing the temporal trade-off between feeding and predator avoidance, especially when environmental drivers are weak or absent [8].
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...