GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology reviews 20 (1997), S. 0 
    ISSN: 1574-6976
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The spontaneous precipitation of amorphous iron hydroxide and ferric hydroxysulfate has generally been considered to be an inorganic process involving the oxidation of ferrous iron with or without the presence of sulfate. However, our study of bacterial communities growing in an acid mine drainage lagoon sediment has confirmed that microorganisms were also capable of facilitating this mineral precipitation. Transmission electron microscopy revealed that bacteria growing at the surface had iron-rich capsules, along with detectable amounts of Zn, Ti, Mn and K incorporated into the mineralised matrix. In the subsurface, more cells were associated with granular, fine-grained mineral precipitates, composed almost exclusively of iron and sulfur. Pore water profiles indicated that no discernible sulfate reduction had taken place, suggesting that these authigenic minerals were ‘ferric hydroxysulfate’, and not iron sulfide. Energy dispersive X-ray spectroscopy further indicated that the subsurface minerals had variable composition, with the Fe:S ratio decreasing with depth from 3.5:1 at 15 cm to 1.9:1 at 30 cm. This indicates the high reactivity of ferric hydroxide for dissolved sulfate. Because iron reduction was limited to sediment depths between 3–10 cm, it is conceivable that these minerals are not amenable to bacterial reduction, and hence, the ability of bacteria to bind and form such precipitates may provide a natural solution to cleansing acidified waters with a high dissolved metal content.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology reviews 20 (1997), S. 0 
    ISSN: 1574-6976
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Transmission electron microscopy examination of bacterial cells, growing naturally in freshwater and marine environments, reveals that they can precipitate a variety of iron minerals. The development of these authigenic mineral phases may be either ‘biologically controlled’, whereby the cell regulates mineral formation, or ‘biologically induced’, with biominerals commonly generated as secondary by-products of microbe-environment interactions. With the vast majority of bacteria biomineralisation is a two-step process; initially metals are electrostatically bound to the anionic surfaces of the cell wall and surrounding organic polymers, where they subsequently serve as nucleation sites for crystal growth. Because of its relatively high activity in aqueous solutions, iron is preferentially bound to reactive organic sites. As the latter stages of mineralisation are inorganically driven, the type of iron mineral formed is inevitably dependent on the available counter-ions, and hence, the chemical composition of the waters in which the microorganisms are growing.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...