GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Blackwell Publishing Ltd  (2)
  • Newark :John Wiley & Sons, Incorporated,  (2)
  • 1
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Geomicrobiology. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (443 pages)
    Edition: 1st ed.
    ISBN: 9781444309027
    DDC: 579
    Language: English
    Note: Intro -- Preface -- 1 Microbial properties and diversity -- 1.1 Classification of life -- 1.2 Physical properties of microorganisms -- 1.2.1 Prokaryotes -- 1.2.2 Eukaryotes -- 1.3 Requirements for growth -- 1.3.1 Physical requirements -- 1.3.2 Chemical requirements -- 1.3.3 Growth rates -- 1.4 Microbial diversity -- 1.5 Life in extreme environments -- 1.5.1 Hydrothermal systems -- 1.5.2 Polar environments viable population is available to seed the global -- 1.5.3 Acid environments -- 1.5.4 Hypersaline and alkaline environments -- 1.5.5 Deep-subsurface environments -- 1.5.6 Life on other planets -- 1.5.7 Panspermia -- 1.6 Summary -- 2 Microbial metabolism -- 2.1 Bioenergetics -- 2.1.1 Enzymes -- 2.1.2 Oxidation-reduction -- 2.1.3 ATP generation -- 2.1.4 Chemiosmosis -- 2.2 Photosynthesis -- 2.2.1 Pigments -- 2.2.2 The light reactions - anoxygenic photosynthesis -- 2.2.3 Classification of anoxygenic photosynthetic bacteria -- 2.2.4 The light reactions - oxygenic photosynthesis -- 2.2.5 The dark reactions -- 2.2.6 Nitrogen fixation -- 2.3 Catabolic processes -- 2.3.1 Glycolysis and fermentation -- 2.3.2 Respiration -- 2.4 Chemoheterotrophic pathways -- 2.4.1 Aerobic respiration -- 2.4.2 Dissimilatory nitrate reduction -- 2.4.3 Dissimilatory manganese reduction -- 2.4.4 Dissimilatory iron reduction -- 2.4.5 Trace metal and metalloid reductions -- 2.4.6 Dissimilatory sulfate reduction -- 2.4.7 Methanogenesis and homoacetogenesis -- 2.5 Chemolithoautotrophic pathways -- 2.5.1 Hydrogen oxidizers -- 2.5.2 Homoacetogens and methanogens -- 2.5.3 Methylotrophs -- 2.5.4 Sulfur oxidizers -- 2.5.5 Iron oxidizers -- 2.5.6 Manganese oxidizers -- 2.5.7 Nitrogen oxidizers -- 3 Cell surface reactivity and metal sorption -- 3.1 The cell envelope -- 3.1.1 Bacterial cell walls -- 3.1.2 Bacterial surface layers -- 3.1.3 Archaeal cell walls. , 3.1.4 Eukaryotic cell walls -- 3.2 Microbial surface charge -- 3.2.1 Acid-base chemistry of microbial surfaces -- 3.2.2 Electrophoretic mobility -- 3.2.3 Chemical equilibrium models -- 3.3 Passive metal adsorption -- 3.3.1 Metal adsorption to bacteria -- 3.3.2 Metal adsorption to eukaryotes -- 3.3.3 Metal cation partitioning -- 3.3.4 Competition with anions -- 3.4 Active metal adsorption -- 3.4.1 Surface stability requirements -- 3.4.2 Metal binding to microbial exudates -- 3.5 Bacterial metal sorption models -- 3.5.1 Kd coefficients -- 3.5.2 Freundlich isotherms -- 3.5.3 Langmuir isotherms -- 3.5.4 Surface complexation -- 3.5.5 Does a generalized sorption model exist? -- 3.6 The microbial role in contaminant mobility -- 3.6.1 Microbial sorption to solid surfaces -- 3.6.2 Microbial transport through porous media -- 3.7 Industrial applications based on microbial surface reactivity -- 3.7.1 Bioremediation -- 3.7.2 Biorecovery -- 3.8 Summary -- 4 Biomineralization -- 4.1 Biologically induced mineralization -- 4.1.1 Mineral nucleation and growth -- 4.1.2 Iron hydroxides -- 4.1.3 Magnetite -- 4.1.4 Manganese oxides -- 4.1.5 Clays -- 4.1.6 Amorphous silica -- 4.1.7 Carbonates -- 4.1.8 Phosphates -- 4.1.9 Sulfates -- 4.1.10 Sulfide minerals -- 4.2 Biologically controlled mineralization -- 4.2.1 Magnetite -- 4.2.2 Greigite -- 4.2.3 Amorphous silica -- 4.2.4 Calcite -- 4.3 Fossilization -- 4.3.1 Silicification -- 4.3.2 Other authigenic minerals -- 4.4 Summary -- 5 Microbial weathering -- 5.1 Mineral dissolution -- 5.1.1 Reactivity at mineral surfaces -- 5.1.2 Microbial colonization and organic reactions -- 5.1.3 Silicate weathering -- 5.1.4 Carbonate weathering -- 5.1.5 Soil formation -- 5.1.6 W eathering and global climate -- 5.2 Sulfide oxidation -- 5.2.1 Pyrite oxidation mechanisms -- 5.2.2 Biological role in pyrite oxidation -- 5.2.3 Bioleaching. , 5.2.4 Biooxidation of refractory gold -- 5.3 Microbial corrosion -- 5.3.1 Chemolithoautotrophs -- 5.3.2 Chemoheterotrophs -- 5.3.3 Fungi -- 5.4 Summary -- 6 Microbial zonation -- 6.1 Microbial mats -- 6.1.1 Mat development -- 6.1.2 Photosynthetic mats -- 6.1.3 Chemolithoautotrophic mats -- 6.1.4 Biosedimentary structures -- 6.2 Marine sediments -- 6.2.1 Organic sedimentation -- 6.2.2 An overview of sediment diagenesis -- 6.2.3 Oxic sediments -- 6.2.4 Suboxic sediments -- 6.2.5 Anoxic sediments -- 6.2.6 Preservation of organic carbon Preservation of organic carbon -- 6.2.7 Diagenetic mineralization -- 6.2.8 Sediment hydrogen concentrations -- 6.2.9 Problems with the biogeochemical zone scheme -- 6.3 Summary -- 7 Early microbial life -- 7.1 The prebiotic Earth -- 7.1.1 The Hadean environment -- 7.1.2 Origins of life -- 7.1.3 Mineral templates -- 7.2 The first cellular life forms -- 7.2.1 The chemolithoautotrophs -- 7.2.2 Deepest-branching Bacteria and Archaea -- 7.2.3 The fermenters and initial respirers -- 7.3 Evolution of photosynthesis -- 7.3.1 Early phototrophs -- 7.3.2 Photosynthetic expansion -- 7.3.3 The cyanobacteria -- 7.4 Metabolic diversification -- 7.4.1 Obligately anaerobic respirers -- 7.4.2 Continental platforms as habitats -- 7.4.3 Aerobic respiratory pathways -- 7.5 Earth's oxygenation -- 7.5.1 The changing Proterozoic environment -- 7.5.2 Eukaryote evolution -- 7.6 Summary -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Geobiology. ; Biosphere. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (481 pages)
    Edition: 1st ed.
    ISBN: 9781118280867
    DDC: 508
    Language: English
    Note: Intro -- FUNDAMENTALS OF GEOBIOLOGY -- Contents -- Contributors -- 1. What is Geobiology? -- 1.1 Introduction -- 1.2 Life interacting with the Earth -- 1.3 Pattern and process in geobiology -- 1.4 New horizons in geobiology -- References -- 2. The Global Carbon Cycle: Biological Processes -- 2.1 Introduction -- 2.2 A brief primer on redox reactions -- 2.3 Carbon as a substrate for biological reactions -- 2.4 The evolution of photosynthesis -- 2.5 The evolution of oxygenic phototrophs -- 2.6 Net primary production -- 2.7 What limits NPP on land and in the ocean? -- 2.8 Is NPP in balance with respiration? -- 2.9 Conclusions and extensions -- References -- 3. The Global Carbon Cycle: Geological Processes -- 3.1 Introduction -- 3.2 Organic carbon cycling -- 3.3 Carbonate cycling -- 3.4 Mantle degassing -- 3.5 Metamorphism -- 3.6 Silicate weathering -- 3.7 Feedbacks -- 3.8 Balancing the geological carbon cycle -- 3.9 Evolution of the geological carbon cycle through Earth's history: proxies and models -- 3.10 The geological C cycle through time -- 3.11 Limitations and perspectives -- References -- 4. The Global Nitrogen Cycle -- 4.1 Introduction -- 4.2 Geological nitrogen cycle -- 4.3 Components of the global nitrogen cycle -- 4.4 Nitrogen redox chemistry -- 4.5 Biological reactions of the nitrogen cycle -- 4.6 Atmospheric nitrogen chemistry -- 4.7 Summary and areas for future research -- References -- 5. The Global Sulfur Cycle -- 5.1 Introduction -- 5.2 The global sulfur cycle from two perspectives -- 5.3 The evolution of S metabolisms -- 5.4 The interaction of S with other biogeochemical cycles -- 5.5 The evolution of the S cycle -- 5.6 Closing remarks -- Acknowledgements -- References -- 6. The Global Iron Cycle -- 6.1 Overview -- 6.2 The inorganic geochemistry of iron: redox and reservoirs -- 6.3 Iron in modern biology and biogeochemical cycles. , 6.4 Iron through time -- 6.5 Summary -- Acknowledgements -- References -- 7. The Global Oxygen Cycle -- 7.1 Introduction -- 7.2 The chemistry and biochemistry of oxygen -- 7.3 The concept of redox balance -- 7.4 The modern O2 cycle -- 7.5 Cycling of O2 and H2 on the early Earth -- 7.6 Synthesis: speculations about the timing and cause of the rise of atmospheric O2 -- References -- 8. Bacterial Biomineralization -- 8.1 Introduction -- 8.2 Mineral nucleation and growth -- 8.3 How bacteria facilitate biomineralization -- 8.4 Iron oxyhydroxides -- 8.5 Calcium carbonates -- Acknowledgements -- References -- 9. Mineral-Organic-Microbe Interfacial Chemistry -- 9.1 Introduction -- 9.2 The mineral surface (and mineral-bio interface) and techniques for its study -- 9.3 Mineral-organic-microbe interfacial processes: some key examples -- Acknowledgements -- References -- 10. Eukaryotic Skeletal Formation -- 10.1 Introduction -- 10.2 Mineralization by unicellular organisms -- 10.3 Mineralization by multicellular organisms -- 10.4 A brief history of skeletons -- 10.5 Summary -- Acknowledgements -- References -- 11. Plants and Animals as Geobiological Agents -- 11.1 Introduction -- 11.2 Land plants as geobiological agents -- 11.3 Animals as geobiological agents -- 11.4 Conclusions -- Acknowledgements -- References -- 12. A Geobiological View of Weathering and Erosion -- 12.1 Introduction -- 12.2 Effects of biota on weathering -- 12.3 Effects of organic molecules on weathering -- 12.4 Organomarkers in weathering solutions -- 12.5 Elemental profiles in regolith -- 12.6 Time evolution of profile development -- 12.7 Investigating chemical, physical, and biological weathering with simple models -- 12.8 Conclusions -- Acknowledgements -- References -- 13. Molecular Biology's Contributions to Geobiology -- 13.1 Introduction -- 13.2 Molecular approaches used in geobiology. , 13.3 Case study: anaerobic oxidation of methane -- 13.4 Challenges and opportunities for the next generation -- Acknowledgements -- References -- 14. Stable Isotope Geobiology -- 14.1 Introduction -- 14.2 Isotopic notation and the biogeochemical elements -- 14.3 Tracking fractionation in a system -- 14.4 Applications -- 14.5 Using isotopes to ask a geobiological question in deep time -- 14.6 Conclusions -- Acknowledgements -- References -- 15. Biomarkers: Informative Molecules for Studies in Geobiology -- 15.1 Introduction -- 15.2 Origins of biomarkers -- 15.3 Diagenesis -- 15.4 Isotopic compositions -- 15.5 Stereochemical considerations -- 15.6 Lipid biosynthetic pathways -- 15.7 Classification of lipids -- 15.8 Lipids diagnostic of Archaea -- 15.9 Lipids diagnostic of Bacteria -- 15.10 Lipids of Eukarya -- 15.11 Preservable cores -- 15.12 Outlook -- Acknowledgements -- References -- 16. The Fossil Record of Microbial Life -- 16.1 Introduction -- 16.2 The nature of Earth's early microbial record -- 16.3 Paleobiological inferences from microfossil morphology -- 16.4 Inferences from microfossil chemistry and ultrastructure (new technologies) -- 16.5 Inferences from microbialites -- 16.6 A brief history, with questions -- 16.7 Conclusions -- Acknowledgements -- References -- 17. Geochemical Origins of Life -- 17.1 Introduction -- 17.2 Emergence as a unifying concept in origins research -- 17.3 The emergence of biomolecules -- 17.4 The emergence of macromolecules -- 17.5 The emergence of self-replicating systems -- 17.6 The emergence of natural selection -- 17.7 Three scenarios for the origins of life -- Acknowledgements -- References -- 18. Mineralogical Co-evolution of the Geosphere and Biosphere -- 18.1 Introduction -- 18.2 Prebiotic mineral evolution I - evidence from meteorites -- 18.3 Prebiotic mineral evolution II - crust and mantle reworking. , 18.4 The anoxic Archean biosphere -- 18.5 The Great Oxidation Event -- 18.6 A billion years of stasis -- 18.7 The snowball Earth -- 18.8 The rise of skeletal mineralization -- 18.9 Summary -- Acknowledgements -- References -- 19. Geobiology of the Archean Eon -- 19.1 Introduction -- 19.2 Carbon cycle -- 19.3 Sulfur cycle -- 19.4 Iron cycle -- 19.5 Oxygen cycle -- 19.6 Nitrogen cycle -- 19.7 Phosphorus cycle -- 19.8 Bioaccretion of sediment -- 19.9 Bioalteration -- 19.10 Conclusions -- References -- 20. Geobiology of the Proterozoic Eon -- 20.1 Introduction -- 20.2 The Great Oxidation Event -- 20.3 The early Proterozoic: Era geobiology in the wake of the GOE -- 20.4 The mid-Proterozoic: a last gasp of iron formations, deep ocean anoxia, the 'boring' billion, and a mid-life crisis -- 20.5 The history of Proterozoic life: biomarker records -- 20.6 The history of Proterozoic life: mid-Proterozoic fossil record -- 20.7 The late Proterozoic: a supercontinent, oxygen, ice, and the emergence of animals -- 20.8 Summary -- Acknowledgements -- References -- 21. Geobiology of the Phanerozoic -- 21.1 The beginning of the Phanerozoic Eon -- 21.2 Cambrian mass extinctions -- 21.3 The terminal Ordovician mass extinction -- 21.4 The impact of early land plants -- 21.5 Silurian biotic crises -- 21.6 Devonian mass extinctions -- 21.7 Major changes of the global ecosystem in Carboniferous time -- 21.8 Low-elevation glaciation near the equator -- 21.9 Drying of climates -- 21.10 A double mass extinction in the Permian -- 21.11 The absence of recovery in the early Triassic -- 21.12 The terminal Triassic crisis -- 21.13 The rise of atmospheric oxygen since early in Triassic time -- 21.14 The Toarcian anoxic event -- 21.15 Phytoplankton, planktonic foraminifera, and the carbon cycle -- 21.16 Diatoms and the silica cycle -- 21.17 Cretaceous climates. , 21.18 The sudden Paleocene-Eocene climatic shift -- 21.19 The cause of the Eocene-Oligocene climatic shift -- 21.20 The re-expansion of reefs during Oligocene time -- 21.21 Drier climates and cascading evolutionary radiations on the land -- References -- 22. Geobiology of the Anthropocene -- 22.1 Introduction -- 22.2 The Anthropocene -- 22.3 When did the Anthropocene begin? -- 22.4 Geobiology and human population -- 22.5 Human appropriation of the Earth -- 22.6 The carbon cycle and climate of the Anthropocene -- 22.7 The future of geobiology -- Acknowledgements -- References -- Index -- Colour plates.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology reviews 20 (1997), S. 0 
    ISSN: 1574-6976
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Transmission electron microscopy examination of bacterial cells, growing naturally in freshwater and marine environments, reveals that they can precipitate a variety of iron minerals. The development of these authigenic mineral phases may be either ‘biologically controlled’, whereby the cell regulates mineral formation, or ‘biologically induced’, with biominerals commonly generated as secondary by-products of microbe-environment interactions. With the vast majority of bacteria biomineralisation is a two-step process; initially metals are electrostatically bound to the anionic surfaces of the cell wall and surrounding organic polymers, where they subsequently serve as nucleation sites for crystal growth. Because of its relatively high activity in aqueous solutions, iron is preferentially bound to reactive organic sites. As the latter stages of mineralisation are inorganically driven, the type of iron mineral formed is inevitably dependent on the available counter-ions, and hence, the chemical composition of the waters in which the microorganisms are growing.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology reviews 20 (1997), S. 0 
    ISSN: 1574-6976
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The spontaneous precipitation of amorphous iron hydroxide and ferric hydroxysulfate has generally been considered to be an inorganic process involving the oxidation of ferrous iron with or without the presence of sulfate. However, our study of bacterial communities growing in an acid mine drainage lagoon sediment has confirmed that microorganisms were also capable of facilitating this mineral precipitation. Transmission electron microscopy revealed that bacteria growing at the surface had iron-rich capsules, along with detectable amounts of Zn, Ti, Mn and K incorporated into the mineralised matrix. In the subsurface, more cells were associated with granular, fine-grained mineral precipitates, composed almost exclusively of iron and sulfur. Pore water profiles indicated that no discernible sulfate reduction had taken place, suggesting that these authigenic minerals were ‘ferric hydroxysulfate’, and not iron sulfide. Energy dispersive X-ray spectroscopy further indicated that the subsurface minerals had variable composition, with the Fe:S ratio decreasing with depth from 3.5:1 at 15 cm to 1.9:1 at 30 cm. This indicates the high reactivity of ferric hydroxide for dissolved sulfate. Because iron reduction was limited to sediment depths between 3–10 cm, it is conceivable that these minerals are not amenable to bacterial reduction, and hence, the ability of bacteria to bind and form such precipitates may provide a natural solution to cleansing acidified waters with a high dissolved metal content.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...